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Abstract. Side-channel attacks challenge the security of cryptographic
devices. One of the widespread countermeasures against these attacks
is the masking approach. In 2012, Nassar et al. [21] presented a new
lightweight (low-cost) Boolean masking countermeasure to protect the
implementation of the AES block-cipher. This masking scheme repre-
sents the target algorithm of the DPAContest V4 [30]. In this article, we
present the first machine learning attack against a masking countermea-
sure, using the dataset of the DPAContest V4. We succeeded to extract
each targeted byte of the key of the masked AES with 26 traces during
the attacking phase. This number of traces represents roughly twice the
number of traces needed compared to an unmasked AES on the same
cryptographic device. Finally, we compared our proposal to a stochastic
attack and to a strategy based on template attack. We showed that an
attack based on a machine learning model reduces the number of traces
required during the attacking step with a factor two and four compared
respectively to template attack and to stochastic attack when analyzing
the same leakage information. A new strategy based on stochastic attack
reduces this number to 27.8 traces (in average) during the attack but
requires a larger execution time in our setting than a learning model.

Keywords: side-channel attack, masking, profiled attack, machine learn-
ing, stochastic attack, template attack.

1 Introduction

Embedded devices such as smart cards, mobile phones, and RFID tags are
widely used in our everyday lives. These devices implement cryptographic
operations allowing to secure, for example, bank transfers, buildings and
cars. For this, several cryptographic primitives can be used such as an
encryption function. During the execution of an encryption algorithm,
the device processes secret information. These secret information could



be retrieved with physical attacks against the physical device by analyzing
unintentional leakages such as the power consumption [14], the processing
time [13], the electromagnetic emanation [7] or a combination of them [28].

In recent years the cryptographic community explored new attacks
based on machine learning models. These methods demonstrate that tem-
plate attacks (that can be considered as the strongest leakage analysis in
an information theoretic sense [4]) overestimate the security of embedded
devices in several scenarios. Lerman et al. [15, 16] compared a template at-
tack with a binary machine learning approach, based on non-parametric
methods, against cryptographic hardware devices implementing a sym-
metric and an asymmetric cryptographic algorithm. Hospodar et al. [10,
11] analyzed a software implementation of a portion of a block cipher.
Their experiments support the idea that non-parametric techniques can
be competitive and sometimes better (i.e. less traces in the attacking
phase) than template attack. Heuser et al. [9] generalized this idea by an-
alyzing multi-class classification models in several contexts. In the same
year Bartkewitz [1] applied a multi-class machine learning model allow-
ing to improve the attack success with respect to the binary approach.
Recently, Lerman et al. [17] proposed a machine learning approach that
takes into account the temporal dependencies between power values. This
method improves the success rate of an attack in a low signal-to-noise ra-
tio with respect to classification methods. In the same year, Martinasek
et al. [20] applied a neural network in order to extract one byte of the key
of AES. Their method retrieves the secret value with probability around
0.9 using only one measured power leakage.

In parallel with attacks, the embedded systems industry implements
countermeasures. They counteract side-channel attacks by inducing a
leakage independent of the secret target value. It is worth to mention
that so far all the attacks based on machine learning were applied on un-
protected cryptographic devices. It was still unclear whether the results
of the previous works are still the same in a protected environment. Dur-
ing the attacking phase, for a specific countermeasure and for a specific
device, open questions are: (1) How many traces are required against a
protected device with a machine learning model compared to a strategy
based on template attack or based on stochastic attack? (2) How many
traces are required by a machine learning model attacking a protected
device compared to an unprotected device? (3) What is the impact of
the number of traces used in the profiling step by a machine learning
model attacking a protected device? We aim to answer these questions
by proposing an original efficient combination between a machine learn-
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ing model and a non-profiled attack. Our requirements are fast-execution,
low-memory usage and high success rate of the attack (i.e. realistic attack
scenarios).

We made a detailed assessment of the proposed approach by con-
sidering four public datasets with different number of traces during the
profiling phase and ten public datasets during the attacking phase. These
traces were collected on a smart card that implements the block-cipher
AES protected by a masking scheme. All our datasets were extracted from
the public dataset of the DPAContest V4 [30], “an initiative towards an
international benchmarking reference” [30], thus allowing reproducing all
our experiments.

This paper is organized as follows. Section 2 discusses non-profiled
attacks, profiled attacks and masking countermeasures. Section 3 intro-
duces our original attack based on a machine learning approach against
a masking scheme. Section 4 illustrates the power of our proposal with
several datasets. Section 5 concludes this paper with several future works.

2 Preliminaries

2.1 Side-channel attack

During the execution of an encryption algorithm, the cryptographic device
processes a function f

f : M×O → F (1)

s = fO(m) (2)

called a sensitive variable [25] where O ∈ O = {O0, O1, ..., OK−1} is a key-
related information where O = {0, 1}l1 and l1 is the size of the secret value
used in f (e.g. one byte of the secret key), m ∈M = {0, 1}l2 represents a
public information where l2 is the size of the public value used in f (e.g.
one byte of the plaintext) and F = {0, 1}l3 is the codomain of f where l3
is the size of the output of f . The adversary targets this function during
the attack.

Let

jT i =
{
j
tT i ∈ R | t ∈ [1;n]

}
(3)

be the j-th leakage information (called trace) associated to the i-th target
value. We consider the leakage information j

tT i of the device at time t
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depending on the output of fOi(m) such that

j
tT i = L(fOi(m)) + ε (4)

where ε ∈ R is the noise following a Gaussian distribution with zero mean
and L is the leakage model

L : F → Q (5)

Q = L(fO(m)) (6)

where Q ⊂ R. Examples of models L are the Hamming weight (HW) and
the Hamming distance [19].

Non-profiled attack
The non-profiled attack represents a common approach in order to attack

a cryptographic device. This attack estimates the output value of fO(m)
for each possible target value O. Then, the estimated leakage model L̂
transforms this output value to allow, in fine, to compare the real and the
predicted leakage information with a distinguisher D. This paper focuses
on univariate Correlation Power Analysis (CPA) where the distinguisher
represents the Pearson correlation estimator.

Profiled attack
Let Pr [A] be the probability of A and let Pr [A | B] be the probability of

A given B. The profiled attack strategy represents a more efficient attack
by a deeper leakage estimation. It estimates (with a set of traces called
learning set) a template Pr

[
jT i | L(fOi(m)); θi

]
(where θi is the param-

eter of the probability density function) for each target value during the
profiling step. The learning set is measured on a controlled device similar
to the target chip. Once a template is estimated for each target value, the
adversary classifies a new trace T (measured on the target device) during
the attacking step with a profiled model A(T ) that computes the value
Ô which maximizes the a posteriori probability

Ô = A(T ) = arg max
O∈O

Pr [L (fO (m)) | T ] (7)

= arg max
O∈O

Pr [T | L (fO (m))]× Pr [L (fO (m))]

Pr [T ]
(8)

= arg max
O∈O

P̂r
[
T | L̂ (fO (m))

]
× P̂r

[
L̂ (fO (m))

]
(9)
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where the apriori probabilities P̂r
[
L̂ (fO (m))

]
are estimated by the user.

Several approaches exist in order to estimate Pr [T | L (fO (m))] such
as the parametric template attack [4], the stochastic attack [27] and the
non-parametric machine learning models [10, 15]. The former assumes
that this probability follows a Gaussian distribution for each target value.

The stochastic attack modelizes the leakage model L at time t with a
regression model th, i.e.

j
tT i = L (fOi (m)) + ε (10)

= th (fOi (m)) + tR (11)

= tc+

U∑
u=1

tαu gu (fOi (m)) + tR (12)

where tR is a residual Gaussian noise at time t, {tc, tα1, tα2, ..., tαU} is
the parameter of the regression model th and {g1, g2, ..., gU} is the basis
used in the regression. Usually each function gj equals to

gj (fOi (m)) = Bitj (fOi (m)) (13)

where Bitj (x) returns the j-th bit of x. Then, the attacker assumes that
Pr [T | L (fOi (m))] follows the Gaussian distribution N (h (fOi (m)), Σ)
where h(x) equals to {1h(x), 2h(x), ..., nh(x)} and Σ ∈ Rn×n is the co-
variance matrix of the residual term.

The non-parametric machine learning models make no assumption on
the density distribution functions. For example Random Forest model
(RF) [2] builds a set of decision trees that classifies a trace based on a
voting system. Support Vector Machine (SVM) [5] discriminates traces
associated to different target values with hyperplanes. We refer to [1, 9–
11, 15–17] for deeper explanations on the parametric template attack and
on the non-parametric machine learning models.

2.2 Masking countermeasure

Based on secret sharing, the masking countermeasure aims to reduce the
unintentional leakage information of a cryptographic device [3]. For this,
the method masks a public information m with d uniformly distributed
random values v = {v0, v1, ..., vd−1} ∈ Vd changing at each execution
where V = {0, 1}l4 and l4 is the size of each random value. This approach
is called a masking scheme of order d. In a theoretical point of view, the
security level of a masked implementation against side-channel attacks

5



increases exponentially with d [3] when the amount of noise in the traces
is sufficient [29].

Potentially, an adversary can retrieve the secret information by using
an attack of order d+1 (where the attacker considers d+1 targets: the set
of d random mask values and a key-related information). More precisely,
the (d+ 1)-order non-profiled attack combines d+ 1 points in each trace
associated to the mask values (e.g. points correlated to HW (fO (m⊕ v))
and to HW (vi)). Then, after this combination, a classical non-profiled
attack is performed. However, it turns out that the mask values still
influence the result of this combination (in a CPA context) and, as a
result, an attack against a masked implementation needs more traces
than against an unmasked implementation [22].

3 Machine learning approach against masking
countermeasure

In a secure implementation context, it is necessary that the mask values
remain secret. It is quite natural to wonder whether an adversary can
retrieve information on these secret values by analyzing the leakage infor-
mation. Indeed, once the mask values is revealed or removed, the attacker
is able to execute an efficient non-profiled or profiled attack.

In 2008, Werner Schindler [26] extended the stochastic attack to a
masking context by taking into account the mask value v in the deter-
ministic part. The main advantage of this approach is that we need a
smaller set of measurements during the profiling step compared to TA
applied to masking [26].

Oswald et al. [22] evaluated several approaches to attack a masked
implementation with a combination between TA and CPA. In the same
year, Gierlichs et al. [8] extended these practical proposals with a theoret-
ical analysis. The first approach (called Templates Before Preprocessing)
uses template attack to extract the values of the estimated leakage in-
formation of the d + 1 masked information (e.g. HW((fO (m⊕ v)) and
HW (vi)) before combining them and to apply a CPA. The second ap-
proach (called Templates During Preprocessing) forces a bias into the
mask values by removing traces associated to certain mask values. For
this, the template attack extracts mask-related information and keeps a
subset of traces associated to a subset of mask values. Then a CPA on
the selected traces reveals the key. The third approach (called Templates
After Preprocessing) uses template attack to extract the unmasked sen-
sitive value (e.g. HW (fO (m))) and performs a CPA on the extracted un-
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masked sensitive value. The last approach (called Template based DPA)
performs a template attack against the masking implementation by re-
placing Pr [T | L (fO (m))] in equation 9 with

P̂r [T | L (fO (m))] =
∑
v∈Vd

P̂r [T | L (fO (m⊕ v)) ∧ v]× P̂r [v] (14)

As a result, we need card(Q) × card(Vd) templates (where card(x) rep-
resents the cardinality of the set x), one for each possible combination of
L (fO (m⊕ v)) and v.

We propose a new approach that uses a machine learning approach in
order: (1) to bypass the problem of combining masks-related information
that still keeps a dependence to mask values (unlike the d-order non-
profiled attack, the Templates Before Preprocessing and the Templates
After Preprocessing); (2) to keep all traces in the attacking step (unlike
the Templates During Preprocessing); (3) to reduce the number of tem-
plates from |Q| × |Vd| to |Vd| (compared to the Template based DPA)
leading to several advantages. In a theoretical point of view: (i) the num-
ber of required data increases with the number of templates (c.f. we need
one learning set per template that leads to a gigantic workload in the
profiling step [26]) and (ii) the imbalanced class problem [12] arises in the
Template based DPA according to the density distribution of L (fO (m))
(unlike our proposal). In a practical point of view, in the case of the DPA-
Contest V4, the adversary has no control on the attacked device and, as a
result, we (empirically) estimated that template based DPA needs a large
number of measurements in the profiling step - at least 40,000 traces each
of 435,002 samples, representing more than 234 bytes of information - in
order to have at least one trace per template with probability 0.99 when
the Hamming weight leakage model is chosen. For the same problem, our
proposal needs at least 200 traces (i.e. a realistic attack scenario). In prac-
tice, we need at least 48,698 traces for template based DPA and at least
35 for our proposal when considering the dataset of the DPAContest V4.

We suggest to apply a profiled attack to extract the mask values before
a non-profiled attack that retrieves the secret key. Note that this approach
is generalizable to the case where a profiled attack is used to extract the
secret key. Furthermore, we assume to be in the worst case scenario where
the adversary knows the mask values used during the profiling phase.
Our requirements are fast-execution, low-memory usage and high success
rate (i.e. realistic attack scenarios). Efficient methods to perform profiled
attacks have been proposed recently [1, 9–11, 15, 16]. These methods use
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a machine learning model that returns the target value after a learning
(profiling) step. Concerning the non-profiled attack, several approaches
exist. One of the most efficient methods represents the CPA that does
not require any estimation probability density function. Note that our
method can be extended to other (nonlinear) distinguishers.

4 Experiments and discussion

4.1 Target implementation

The experiments were carried out on electromagnetic emission leakages
that are freely available on the DPAContest V4 website [30] in order to
easily reproduce the results. The target cryptographic device (an Atmel
ATMega-163 smart card) implements in software the masked block-cipher
AES-256 in encryption mode without any mode of operation. Each trace
has 435, 002 samples associated to the same secret key and measured dur-
ing the first round. The masking scheme is a variant of the “Rotating Sbox
Masking” [21]; an additive Boolean masked scheme with masked SBox.
According to its authors, it has a low-cost design and keeps performances
and complexity close to the unprotected scheme (in a hardware context)
while being resistant against several side-channel attacks. The purpose of
the DPAContest is to retrieve the first 128 key bits. As we target the first
128 key bits and since the first round of AES-128 and AES-256 are the
same, in the following we focus on AES-128.

Briefly, the masking scheme generates several mask values based on
one 4-bit random value (called offset value) for each encryption. We refer
to [21, 30] for additional information on the masking scheme and on the
acquisitions setup.

4.2 Experimental results

For the sake of fairness, we compared different attacks based on the same
target value and the same dataset: each attack extracts first the offset
value before applying a CPA to find the key value. Note that an adversary
targeting the offset or the mask value leads to the same result in our case:
the (Pearson) correlation between them equals one. We suggest to target
the mask value when the setting differs.

Finding the offset value on traces
Before proceeding with the quantitative analysis, we reports here a pre-
liminary visualization phase that allowed us to find the points that are

8



the highest correlated with the secret offset. For the sake of time and
memory, we computed the Pearson correlation between each instant of
1500 traces and the offset values (see Figure 1). It is worth emphasizing
that several instants are (significantly) correlated with the target value.
Except in the middle of traces, the visualization suggests that there is a
high amount of information on the offset value available in each trace. As
a consequence, we should expect that the profiled model would output
the right offset value with a high probability.

Fig. 1: Correlation between offset and power values at each time in the
first round of the masked AES.

Model selection
This section assesses and compares several classifiers that extract the
secret offset value. We considered four different types of multiclass classi-
fication models: Support Vector Machine (SVM), Random Forest (RF),
Template Attack (TA) and Stochastic Attack (SA). We used two disjoint
sets: a learning set of 1500 traces to estimate the parameters of each
model and a validation set of 1500 traces to measure their success rate in
predicting the right offset value. During the feature selection step, in each
trace, we selected 50 instants that are the highest linearly correlated with
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the offset value3. We did not considered other feature selection methods
(such as “Principal Component Analysis” [23] or “minimum Redundancy
Maximum Relevance” [24]) due to their massive memory requirements or
time consuming while our dataset contained 1500× 435, 002 bytes > 229

bytes4. In spite of the low feature selection complexity, we observed a
high success rate of the models.

Figures 2, 3, 4 and 5 report the success rate to predict the right
offset value as a function of the number of points (that were selected
from the sorted 50 instants) used in each trace for respectively SVM,
RF, TA and SA. We can extract the following observations. First, as
expected, the higher the number of traces in the learning set (from 25%
to 100% of 1500 traces), the higher the accuracy. Secondly, the number
of selected points in each trace influences the success rate: the higher the
number of features, the higher the success rates for SVM, RF and SA. It
is interesting to remark that in a small learning set context (i.e. less than
75% of the entire learning set) the TA reduces its success rate when the
number of features goes beyond a certain size. This is presumably due to
the ill-conditioning of the covariance matrix when the number of features
is too large. In the other hand, the success rate of the new proposal based
on SA varies only slightly in function of the size of the learning set.

Figure 6 combines the three previous plots by choosing the best size
for the learning set (i.e. 100% of 1500 traces). The success rates of SVM,
RF and SA are similar and greater than the success rate of TA. Note that
we did not select the best meta-parameter values for SVM and RF (such
as the number of trees in the RF) but only the best number of features
(from 2 to 50) to predict the target value. The default values of the im-
plementation of SVM [6] and RF [18] were used5. As a consequence, we
do not claim that the SVM configurations and the RF configurations are
necessarily the best one for profiled attack neither for our experiments.
However, our experiments show that a profiled attack based on a ma-
chine learning model extracts more information on the offset value than
a strategy based on TA for the presented task.

Based on the above considerations, and in order to choose the best
learning model, we looked at the learning time and the prediction time
of the offset, based on one trace, as a function of the number of selected

3 The 50 instants are sorted in descending order with respect to their correlation
coefficient in absolute value.

4 Each sample of the trace is an 8-bit value. The limit of R - the used program language
- is 231 bytes for a matrix.

5 SVM had a radial kernel with a gamma equals to the inverse of the data dimension
and a cost of 1. RF had 500 trees.
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points (see Figures 8 and Figures 9)6. TA has the lowest learning time
while its prediction time increases exponentially in the number of selected
features. SVM has a lower learning time and a reasonable prediction time
compared to RF. As a result, in the attacking step, we use only SVM
as the machine learning model. We do not report the results for SA as
we used an unoptimized and nonpublic implementation. According to the
previous results, we selected 50 features for SVM, TA and SA leading to
a success rate of respectively 0.88, 0.66 and 0.90.

Attacking step
During the attacking step we considered four settings targeting the Ham-
ming weight of the MaskedSubBytes. In the first setting, CPA extracts
the secret key on an unmasked implementation (i.e. the non-profiled at-
tack always receives the correct offset value). The second setting targets
the masked implementation where a SVM extracts the mask value and
where a CPA searches the secret key. In the third and fourth experiments,
the SVM is changed by respectively the TA and the SA. We repeated ten
times each setting with a different set of traces during the attacking phase
while the learning set remains the same.

Figure 10 summarizes the number of key bytes found as a function
of the number of traces used (in average) during the non-profiling phase
for each setting. We found the key with 16.3 traces (with less than 5
seconds of execution time) for the unmasked implementation. For the
masked implementation, we extracted the key with 26 traces (with less
than 20 seconds of execution time) by using the SVM, with 27.8 traces
(with less than 80 seconds of execution time) by using the SA and with
56.4 traces (with less than 45 seconds of execution time) by using the TA.
Figure 11 shows the minimum, the maximum and the average number of
traces used to find the key. Compared to each strategy applied on the
protected device, the SVM (combined with the CPA) leads to the closest
results to an unprotected configuration.

For the sake of completeness, we also implemented the state-of-the-art
stochastic attack on the masking scheme without a non-profiling step as
proposed by Werner Schindler [26]. Figure 7 shows the number of traces
needed on a validation set in function of the number of features used.
The stochastic attack needs more than 40 traces to find the key when the
model considers more than 5 features and it reaches the minimum with 3
features. According to Figure 10, SA needs 107 traces in average in order

6 The experiments were executed on a MacBook Pro with 2.66 GHz Intel Core 2 Duo,
8 GB 1067 MHz DDR3.
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to extract the 16 key bytes on a testing set (with less than 180 seconds
of execution time).

4.3 Discussions

The experimental results of the previous sections suggest some consider-
ations. First, the masking scheme proposed by the DPAContest V4 can
be practically attacked with a combination between profiled and non-
profiled attacks. Our strategy represents a combination between a SVM
and a CPA that required 26 traces during the attacking step to extract
the key of the implementation of a masked AES-128. In comparison, in
the same device, a CPA against an unmasked implementation required in
average 16.3 traces. SVM succeeds to extract information on the offset be-
cause the cryptographic device chooses different operations in function of
this value (e.g. the choice of the masked SBox). Furthermore, the success
of the attack is related to the implementation: the device manipulates the
sixteen State bytes sequentially while they can be manipulated in parallel
on a FPGA. Moreover, the cryptographic device selects randomly only
one offset during whole of the encryption. As a result, many points in a
trace relate to the chosen offset.

The attack should be improved by increasing the number of points
selected in each trace. Indeed, Figure 2 shows that the maximum value
of the success rate is still not reached. However, Figure 8 shows that the
learning step time increases linearly with the number of points selected
in each trace. As a result, there is a trade off to be made between the
accuracy of the model and its learning speed.

The major consideration concerns accuracy since the experimental re-
sults show that in several settings, machine learning improves the success
of attacks with respect to a strategy based on TA or to the state-of-the-
art SA. More precisely, a machine learning model needs four times less
traces than the state-of-the-art SA on masking scheme and two times less
traces than a strategy based on TA. However, a new strategy based on
SA becomes very competitive (in term of data complexity during the at-
tacking phase) as the machine learning model but with a longer execution
time than the machine learning model.

We submitted our best attack to the DPAContest V4 in order to have
a validation of our results by a third party. According to this contest,
the combination of SVM with CPA needs 22 traces with 0.528 seconds to
retrieve a new AES-128 key with their computational power.
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Fig. 2: Support Vector Machine.
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Fig. 3: Random Forest.
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Fig. 4: Template Attack.
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Fig. 5: Stochastic Attack.
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Fig. 6: SVM vs RF vs TA vs SA.
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5 Conclusion and perspectives

In this paper we have introduced an efficient machine learning approach in
order to evaluate the security level of a masked implementation of AES.
Specifically, we have extended the results of previous related works to
protected devices [1, 9–11, 15–17]. The machine learning approach against
a masked cryptographic algorithm consists in attacking first the mask
with a machine learning model (i.e. a profiled attack) before targeting
the secret key with for example a non-profiled attack.

We showed that stochastic attack or a strategy based on template
attack overestimates the security level of protected device while the ma-
chine learning approach improves significantly this estimation. The main
reason of the superiority of machine learning arises with the result of the
multivariate Gaussianity tests that we carried out and that reject the hy-
pothesis that the traces follow a Gaussian distribution in a high number
of configurations. Therefore, a machine learning model extracts more in-
formation on the secret information (than template attack) by analyzing
the same leakage information.

The complexity of the non-profiling step mainly depends on the qual-
ity of the profiled model. The higher the success to retrieve the mask,
the lower the number of traces during the attacking phase. As a result,
compared to a template attack, a learning model improves the probability
to find the true mask value from 0.66 to 0.88 that implies a reduction of
the number of traces in average during the attacking phase from 56.4 to
26. Regarding the state-of-the-art stochastic attack, the learning model
divides the number of traces during the attacking phase by four. How-
ever, a new strategy based on stochastic attack reduces this number to
27.8 traces (in average) during the attack. In our context, the main ad-
vantage of a machine learning approach represents its speed: 80 seconds
of execution time for a strategy based on SA while the machine learn-
ing model requires four times less. In comparison, a non-profiled attack
against an unmasked implementation needs 17 traces with 5 seconds of
execution time on the same cryptographic device. Therefore, the masked
implementation increases the data complexity of the attack by two and
the time complexity by four.

The quality of the profiled attacks mainly depends on the number of
points selected on the traces. A robust feature selection method allowed
to reach a high success rate to find the mask value by the profiled model.
Interesting and as expected, the number of traces in the learning set of
the machine learning model influences the result in a masking context
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(the higher the better). This is due to a reduction of the variance of the
model.

We believe that our work opens up new avenues for interesting further
research works. Among them, experiments must be performed on differ-
ent public datasets of masking or hiding implementations which should be
available in the DPAContest V4. If such experiments confirm the above
results, then there are important implications. Strategies based on tem-
plate attack or stochastic attack against countermeasures scheme may be
shown to be less suitable for security level estimation in the worst case
scenario compared to a machine learning approach.
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