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ABSTRACT
Masking schemes represent a well-researched and successful option
to follow when considering side-channel countermeasures. Still,
such measures increase the implementation cost in terms of power
consumption, clock cycles, and random numbers generation. In fact,
the higher the order of protection against side-channel adversaries,
the higher the implementation cost of countermeasures. S-boxes
represent the most vulnerable part in an implementation when con-
sidering side-channel adversary. In this paper, we investigate how
to generate S-boxes that have improved resilience against varying
orders of side-channel a�acks while having minimal implementa-
tion costs. We examine whether S-boxes generated against a certain
order of a�ack also represent a good solution when considering
di�erent order of a�acks. We demonstrate that we successfully
generated S-boxes resilient against a certain physical a�ack order
but the improvements are small. As a result, S-boxes that are re-
silient against �rst order a�acks stay resilient against higher-order
a�acks, which saves computational power during the design of
higher-order side-channel a�acks resilient S-boxes.
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1 INTRODUCTION
For decades, designers estimated the security level of a crypto-
graphic algorithm independently of its implementation in a cryp-
tographic device. Since the �rst publication on implementation
a�acks in 1996, the physical a�acks have become an active research
area [11]. A side-channel a�ack (SCA) represents a process that
exploits physical leakages (measured on cryptographic devices) in
order to extract sensitive information (e.g., the key used in a sym-
metric encryption algorithm). �e ability to secure devices against
side-channel a�acks represents a critical requirement for the in-
dustry due to several publications on real-world physical a�acks
against (certi�ed and uncerti�ed) industrial products.

�e Internet of�ings (IoT) represents an a�ractive target for
physical a�acks (see e.g., Ronen et al. [21]) since the target device
is in the vicinity of the adversary (which facilitates the analysis of
physical properties). �e widespread adoption of IoT, its extreme
constraints (in terms of area and power consumption) as well as the
hostile environments in which the IoT is manipulated raise the need
of lightweight countermeasures against side-channel a�acks. Fol-
lowing several works on this subject (see for example [4, 8, 10, 20]),
this paper analyses the protection of the nonlinear part (called S-
boxes) of block ciphers, which is o�en targeted by implementation
a�acks. More precisely, this paper focuses on lightweight coun-
termeasures in which the S-boxes (also called (n,m) functions) are
intrinsically more resilient against side-channel a�acks.

In 2014, Picek et al. generated S-boxes of various sizes providing
improved resistance to physical a�acks [16]. �ey used genetic
programming and genetic algorithms to evolve S-boxes minimising
the transparency order metric that relates to the side-channel resis-
tance of the S-boxes [19]. �e main advantage of these approaches
(compared to the exhaustive search) lies in the execution time of the
search: exhaustive search generates 2m ·2n di�erent n ⇥ n S-boxes
((2n )! if we only consider permutations) while genetic algorithms
optimise this search in an automatic way. At the same year, Picek et
al. obtained two S-boxes of sizes 4⇥4 and 8⇥8 by exploiting genetic
algorithms optimising the confusion coe�cient property, which
represents another metric related to the side-channel resistance of
the S-boxes [18]. One year later, Picek et al. built a 4⇥4 S-box using
genetic algorithms optimising the improved transparency order
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metric [6, 17]. Recently, Lerman et al. provided new S-boxes min-
imising the success probability of actual physical a�acks [13]. �ey
provided 4 ⇥ 4 and 5 ⇥ 5 S-boxes that possess increased resistance
against various real-world a�acks exploiting actual leakages.

In this paper, we focus on 4 ⇥ 4 S-boxes since we deem this size
to have the most impact in the future design of lightweight ciphers.
We aim to give an answer to the following question: “Should we take
into account the key enumeration during the design of S-boxes?”. In
order to generate S-boxes with di�erent orders of resilience against
key enumeration, we use genetic algorithms. Such a technique
proved to be a viable choice in previous works where it successfully
generated cryptographically optimal 4 ⇥ 4 S-boxes with improved
resilience against SCAs. It is possible to exhaustively search all opti-
mal 4 ⇥ 4 S-boxes but the problem is the computational complexity
of the evaluation of resilience against key enumeration. �is makes
exhaustive search di�cult even for the smallest S-box sizes.

�is approach is of high importance since (as reported in this
paper) the designers of S-boxes can concentrate only on the �rst
order success probability of side-channel adversaries. Eventually,
this paper highlights that the best S-box (which minimises the
success probability of physical a�acks) depends on the physical
noise level in the leakages. �is result demonstrates the requirement
to select S-boxes as a function of the cryptographic device executing
these S-boxes, and it con�rms the assumption of Lerman et al. [13].

2 BACKGROUND
Let n,m be positive integers – n,m 2 N+. We denote by Fn2 the
n-dimensional vector space over F2 and by F2n the �nite �eld with
2n elements. �e set of all n-tuples of elements in the �eld F2 is
denoted by Fn2 , where F2 is the Galois �eld with two elements. For
any set S , we denote S\{0} by S

⇤. �e usual inner product of a
and b equals a · b =

…n
i=1 aibi in F

n
2 . �e addition of elements of

the �nite �eld F2n is denoted with “+”. Since we o�en identify Fn2
with F2n and when there is no ambiguity, the addition of vectors of
Fn2 ,n > 1 is denoted with “+” as well. �e Hamming weightwH (a)
of a vector a, where a 2 Fn2 , is the number of non-zero positions
in the vector. An (n,m)-function is any mapping F from Fn2 to
Fm2 . An (n,m)-function F is de�ned as a vector F = (f1, · · · , fm ),
where the Boolean functions fi : Fn2 ! F2 for i 2 {1, · · · ,m} are
called the coordinate functions of F.�e component functions of an
(n,m)-function F are all the linear combinations of the coordinate
functions with non all-zero coe�cients.

2.1 S-box Properties and Bounds
An (n,m)-function F is balanced if it takes every value of Fm2 the
same number 2n�m of times.

�e Walsh-Hadamard transform of an (n,m)-function F is (see
e.g., [2]):

WF (a,�) =
’
x 2Fm2

(�1)� ·F (x )+a ·x , a,� 2 Fm2 . (1)

�e nonlinearity NF of an (n,m)-function F equals the minimum
nonlinearity of all its component functions� ·F , where� 2 Fm⇤

2 [15]:

NF = 2n�1 � 1
2

max
a 2 Fn2
� 2 Fm⇤

2

|WF (a,�)|. (2)

�e nonlinearity of any (n,n) function F is bounded above by
the Sidelnikov-Chabaud-Vaudenay bound [5]:

NF  2n�1 � 2
n�1
2 . (3)

Eq. (3) is an equality if and only if F is an Almost Bent (AB) function.
Let F be a function from Fn2 into Fm2 with a 2 Fn2 and b 2 Fm2 .

We denote:

DF (a,b) =
�
x 2 Fn2 : F (x) + F (x + a) = b

 
. (4)

�e entry at the position (a,b) corresponds to the cardinality of the
di�erence table DF (a,b) and is denoted as � (a,b). �e di�erential
uniformity �F is then de�ned as [14]:

�F = max
a,0,b

� (a,b). (5)

Functions that have di�erential uniformity equal to 2 are called
the Almost Perfect Nonlinear (APN) functions. �e best possible
nonlinearity and di�erential uniformity values for the 4 ⇥ 4 S-box
size equal 4.

2.2 Side-Channel Attacks
We assume that the adversary wants to retrieve the secret key used
when the cryptographic device (that executes a known encryp-
tion algorithm) encrypts known plaintexts and provides known
ciphertexts. In order to �nd the key, the adversary targets a set of
key-related information (called the target intermediate values) with
a divide-and-conquer approach. �e divide-and-conquer strategy
extracts information on separate parts of the key (e.g., the adversary
extracts each byte of the key independently) and then combines the
results in order to get the full secret key. In the rest of the paper, we
systematically use the term key to denote the target of our a�acks,
though in fact, we address one part of the key at a time.

During the execution of the encryption algorithm, the crypto-
graphic device processes a function F (e.g., the S-box of the block
cipher AES):

F : P ⇥K ! Y (6)
� = Fk (p),

that outputs the target intermediate value � and where k 2 K is a
key-related information (e.g., one byte of the secret key), and p 2 P
represents information known by the adversary (e.g., one byte of
the plaintext).

2.2.1 Physical Characteristics. Let jT� be the j-th leakage (also
known as trace) measured when the device manipulates the target
value �. In the following, we represent each leakage with one real
value measured when the analysed cryptographic device manipu-
lates the target value �, i.e.:

j
T� = L (�) + j

�� , (7)

= L (Fk (p)) + j
�� , (8)

where j
�� 2 R is the noise of the trace j

T� following for example
the Gaussian distributionwith zeromean and L is the (deterministic)
leakage function. �e function L can be linear (e.g., the weighted
sum of each bit of the input value) or nonlinear (e.g., the weighted
sum of products of bits of the input value). Evaluators o�en model
linear leakage functions as the Hamming weight of the manipulated
value � for so�ware implementations.
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A side-channel a�ack is a process during which an a�acker anal-
yses leakages measured on a target device in order to extract infor-
mation on the secret value. Several side-channel a�acks exist but
we focus on classical a�acks exploiting correlation power analysis
(presented by Coron et al. [7]) since 1) they represent the most e�-
cient a�acks when the leakage model �ts to the leakage function in
univariate se�ings [1], and 2) we presume no assumption error and
no estimation error (of the estimation of the leakage function) lead-
ing to the evaluation of the S-boxes with the worst-case (univariate)
side-channel adversaries.

2.2.2 Correlation Power Analysis. Correlation power analysis
(CPA) recovers the secret key from a cryptographic device by se-
lecting the key that maximises the dependence between the actual
leakage and the estimated leakage based on the assumed secret key.
More precisely, CPA selects the secret key bk such that:

bk 2 argmax
k 2K

�����
⇣bT(k ),T

⌘ ����, (9)

where kx k denotes the Euclidean norm of x , � (X,Y) represents
the Pearson’s correlation between two vectors X and Y, and:

• T =
⇥1
T , ..., NaT

⇤
represents a vector of Na a�ack traces

measured when the target device manipulates the S-box
(where i

T denotes the i-th measurement on the target de-
vice and Na is the number of a�ack traces), and

• bT(k ) =
hbL(F(k � p[1]), . . . ,bL(F(k � p[Na ])

i
refers to a vec-

tor of estimated leakages (with a leakagemodelbL) parametrised
with the output of the S-box combining (with the exclusive-
or operation denoted �) an estimated key k and known
plaintext p[i] associated to i

T .

2.2.3 i-th Order Success Rate. �e designers of cryptographic
devices measure the resistance of an implementation against a
physical a�ack by using (among others) the �rst order Success
Rate (1oSR) [22]. �e �rst order success rate (also known as the
�rst order success probability) represents the probability that the
physical a�ack ranks the actual key in the �rst position of the list of
keys sorted by the physical a�ack in decreasing order of likelihood.
Similarly, the i-th order success rate denotes the probability that the
physical a�ack ranks the actual key among the i �rst positions of the
list of keys. �is metric relates to a side-channel adversary applying
key enumeration algorithms (in which the adversary outputs a set
of keys from the most probable one to the least probable one).

3 RESILIENT S-BOXES AGAINST KEY
ENUMERATION

�is section extends the analysis of S-boxes (generated by genetic
algorithms and reported in [13, 16, 17]) by considering side-channel
adversaries exploiting a CPA with a key enumeration. More pre-
cisely, we aim to verify whether the generated S-boxes, that min-
imise the �rst order success rate, minimise also a higher order
success rate. We also provide results of newly generated S-boxes
taking into account the key enumeration during their design as
well as the multiplicative complexity of such S-boxes.

3.1 Scenarios under Consideration
3.1.1 Leakages Generation. We generated synthetic leakages

having 1 point related to the Hamming weight of the S-Box:
j
T� = L (�) + j

�� = HW (SBox (p � k)) + j
�� . (10)

�is leakage function models the measurements collected during
the execution of (serial) so�ware implementations (which represent
a realistic scenario in IoT). We assume no estimation/assumption
error, which leads the adversary to consider the Hamming weight
model during the a�ack: bL(·) = L(·) = HW(·). We estimated the
success rate by generating 100 000 sets of a�ack leakages.

3.1.2 Target Functions. We focus on seven 4⇥4 S-boxes used by
Joltik, K����, Minalpher, P�����, Prøst, P������, and R��������.
In the sequel, we refer to these (4⇥4) S-boxes as unoptimised S-boxes
since the designers did not optimise these S-boxes with respect to
minimising the success rate of physical a�acks.

�e optimised S-boxes represent nonlinear functions designed
to minimise the �rst order success rate of physical a�acks and
already published in the side-channel literature. �ese optimised
4 ⇥ 4 S-boxes are the following: EvolvedCC [18], EvolvedTO [17],
EvolvedSR1, and EvolvedSR2 [13]. Table 1 reports all these (unopti-
mised and optimised) S-boxes with their cryptographic properties.
�e new optimised S-boxes are nonlinear functions generated with
genetic algorithm by taking into account the key enumeration and
the noise level during the S-box generation. Table 2 provides the
new optimised 4 ⇥ 4.

3.1.3 Search Strategy. As a search technique used to generate
S-boxes, we use genetic algorithms (GAs) since it is a method that is
easy to implement while being very e�cient as reported in related
work. Genetic algorithms are generic population-based metaheuris-
tic optimization technique inspired by biological evolution [9]. Can-
didate solutions to the optimization problem play the role of individ-
uals in a population, and the �tness function determines the quality
of the solutions. Evolution of the population takes place a�er the
repeated application of the above operators. In our algorithm, we
encode solutions (S-boxes) as lists of values between 0 and 2n � 1
where n is the size of the S-box. We use 3-tournament selection
where three solutions are randomly selected and the worst one is
discarded. �e remaining two solutions are used by the crossover
operator (order crossover) to create a new o�spring. �e order
crossover works by �rst randomly selecting two crossover points
and copying everything between those two points from the �rst
parent to the o�spring. �en, starting from the second crossover
point in the second parent, the unused numbers are copied in the
order they appear in that parent [9]. We use the toggle mutation
where we randomly select two values and swap them. �e initial
population is created uniformly at random and the population size
equals 200 individuals. As a stopping criterion, we use the number
of evaluations without improvement, which we set to 150 evalu-
ations. To obtain S-boxes with as high as possible nonlinearity
and as low as possible di�erential uniformity, we use the following
�tness function:

f itnesst = NF + (2n � �F )). (11)

�en, only those solutions that have the best possible values of
nonlinearity and di�erential uniformity are further evolved (while
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Type Name MC S-box

U

Joltik 6 E,4,B,2,3,8,0,9,1,A,7,F,6,C,5,D

K���� 8 7,4,A,9,1,F,B,0,C,3,2,6,8,E,D,5

Minalpher 8 B,3,4,1,2,8,C,F,5,D,E,0,6,9,A,7

P����� 8 B,F,3,2,A,C,9,1,6,7,8,0,E,5,D,4

Prøst 6 0,4,8,F,1,5,E,9,2,7,A,C,B,D,6,3

P������ 7 C,5,6,B,9,0,A,D,3,E,F,8,4,7,1,2

R�������� 6 6,5,C,A,1,E,7,9,B,0,3,D,8,F,4,2

O

EvolvedCC 7 6,4,7,8,0,5,2,A,E,3,D,1,C,F,9,B

EvolvedTO 6 2,0,C,6,A,E,F,7,3,1,8,4,9,D,B,5

EvolvedSR1 8 2,4,8,0,F,B,7,D,6,5,E,3,1,9,C,A

EvolvedSR2 7 F,E,0,A,1,8,9,B,7,6,4,C,5,2,3,D

Table 1: Properties of S-boxes when considering correlation
power analysis. Values of S-boxes are given in hexadecimal
format. Notations O and U represent optimised and unop-
timised S-boxes with respect to side-channel analysis. All
S-boxes are optimal. �e notationMC representsmultiplica-
tive complexity.

retaining those cryptographic properties) so they have low SCA
success probability, which gives us the �tness function used in our
experiments:

f itness = f itnesst + (1 � SR). (12)
Since our search strategy preserves the bijectivity property and
we consider only those S-boxes that have the best possible values
of nonlinearity and di�erential uniformity, it is clear we consider
only optimal S-boxes [12]. When considering the run time of our
genetic algorithm, the most computationally intensive part is the
calculation of SCA success probability. We note that for S-box sizes
larger than 5 ⇥ 5, genetic algorithm becomes much less e�cient
option since it is di�cult to generate solutions that have optimal
values of nonlinearity and di�erential uniformity (for instance, for
the 8 ⇥ 8 size, to the best of our knowledge, heuristic techniques
never generated S-boxes with properties comparable to the AES
S-box).

3.1.4 Multiplicative Complexity of S-boxes. Introduced in the
context of side-channel a�acks by Carlet et al., the multiplicative
Complexity (MC) of an S-box is important for its secure implemen-
tation [3]. Here we will refer to the MC of an S-box as the minimum
number of AND gates (or instructions in case of a so�ware imple-
mentation) that one would need to implement the S-box. MC is
important because the amount of randomness that one needs for
masked implementation grows fast with the number of AND opera-
tions required for the implementation (i.e., it is easier to mask an
XOR operation compared to AND). We estimate the MC of each S-box
using equivalence classes presented in the work by Turan et al. [23],
where their work gives a way to compute the MC for 4-bit Boolean
functions. �e results show that the multiplicative complexity for
our new S-boxes is similar to the previously obtained ones, which
points us that optimising S-boxes for di�erent orders of a�ack does
not bring a negative impact with respect to the MC.

In Table 3 we list the equivalence classes where all the investi-
gated 4 ⇥ 4 S-boxes belong. In total, there are 16 optimal classes as
de�ned by Leander and Poschmann. [12]. Interestingly, it can be

Name MC Or. � S-box
Ev4x4 1oSR � 0.5 8 1 0.5 1,9,4,5,B,6,D,A,C,0,3,F,2,7,8,E

Ev4x4 2oSR � 0.5 8 2 0.5 8,1,F,A,4,9,6,7,0,3,E,B,2,C,D,5

Ev4x4 3oSR � 0.5 7 3 0.5 1,F,2,0,D,C,8,7,5,9,3,B,4,6,E,A

Ev4x4 4oSR � 0.5 7 4 0.5 0,8,C,1,F,B,9,D,7,E,6,A,2,3,5,4

Ev4x4 1oSR � 2 8 1 2 9,C,3,5,F,E,1,2,7,B,0,4,D,6,A,8

Ev4x4 2oSR � 2 7 2 2 D,1,2,E,3,8,A,9,5,B,6,C,4,7,F,0

Ev4x4 3oSR � 2 8 3 2 6,5,E,2,1,A,B,8,C,9,D,4,3,7,F,0

Ev4x4 4oSR � 2 8 4 2 7,8,D,4,3,2,E,5,C,6,9,A,B,0,F,1

Table 2: Properties of new optimised S-boxes when consider-
ing correlation power analysis. �e genetic algorithms opti-
mise each S-box as a function of its size, its nonlinearity, dif-
ferential uniformity, the order of the success rate (denoted
as “Or.”) as well as the standard deviation of the noise in
the leakages. All presented S-boxes have optimal values of
nonlinearity and di�erential uniformity.

Name Class
EvolvedSR1 G0

P������, R��������, EvolvedCC ,
G1EvolvedTO , EvolvedSR2

K����, Minalpher G4
Prøst, Joltik G8

P�����, Ev4x4 1oSR � 2, Ev4x4 3oSR � 2 G13
Ev4x4 1oSR � 0.5, Ev4x4 2oSR � 0.5, Ev4x4 2oSR � 2,

G14Ev4x4 4oSR � 2
Ev4x4 3oSR � 0.5, Ev4x4 4oSR � 0.5 G15

Table 3: Optimal 4 ⇥ 4 S-boxes and their equivalence classes
(classes use the same order as presented by Turan et al. [23]).

seen that S-boxes optimized in previous works favours classes G0
andG1 while our new S-boxes are in classesG13,G14, andG15. �is
could indicate that those classes have be�er side-channel resilience
when considering various orders of a�ack.

3.2 Impact of the Noise in the Generation of
S-boxes

�e �rst experiment analyses the impact of the noise during the
generation of S-boxes by genetic algorithms. We focus on the �rst
order success rate of CPA against 4⇥ 4 S-boxes. Figure 1 shows the
success probability of CPA as a function of the number of a�ack
traces in which the standard deviation of the noise equals 0.5, 1,
and 2 (which leads to a signal-to-noise ratio of 4.27, 1.07, and 0.27).
Interestingly, the generated S-boxes optimised by genetic algorithm
for a noise level x minimise the success rate when the standard
deviation of the physical noise in the leakages equals x . In other
words, the noise level in the leakages impacts the selection of the
best S-boxes, which stresses the usefulness of the selection of S-
boxes as a function of the device executing the S-box operation (as
reported by Lerman et al. [13]).
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(c) � = 2

Figure 1: Success rate of correlation power analysis on 4 ⇥ 4 S-boxes as a function of the number of attack traces. �e standard
deviation of the noise equals � = 1. �e S-boxes have nonlinearity equal to NF = 4 and di�erential uniformity equal to �F = 4.
Each S-box was generated by genetic algorithms minimising the �rst order success rate given a �xed noise level.
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(a) First order success rate.
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(b) Second order success rate.
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(c)�ird order success rate.

Figure 2: Success rates (di�erent orders) of correlation power analysis on 4 ⇥ 4 S-boxes as a function of the number of attack
traces. �e standard deviation of the noise equals � = 0.5. �e S-boxes have nonlinearity equal to NF = 4 and di�erential
uniformity equal to �F = 4.
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(a) First order success rate.
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(b) Second order success rate.
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(c)�ird order success rate.

0 10 20 30 40 50 60 70 80 90 100

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

number of attack traces

su
cc

es
s 

ra
te

Type of the S−box
Unoptimised S−box
Optimised S−box
New Optimised S−box

(d) Fourth order success rate.

Figure 3: Success rate of correlation power analysis on 4 ⇥ 4 S-boxes as a function of the number of attack traces. �e standard
deviation of the noise equals � = 2. �e S-boxes have nonlinearity equal to NF = 4 and di�erential uniformity equal to �F = 4.

3.3 New Optimised vs. Optimised vs.
Unoptimised S-boxes

�is section compares the unoptimised 4⇥4 S-boxes with respect to
optimised S-boxes. We focus on the �rst, second, third, and fourth

order success rates. Figures 2 and 3 report the results by considering
a standard deviation of the noise equal to 0.5 and 2 (which leads to
a signal-to-noise ratio of 4.27 and 0.27). Interestingly, as already
reported for the masking countermeasures, Figure 2 highlights that
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all the (optimised and unoptimised) 4 ⇥ 4 S-boxes provide similar
success rate when the leakages contain a low noise. Figure 3 exhibits
that the generated S-boxes, that minimise the �rst order success
rate, minimise also a higher order success rate. We can see that
the higher the order of the success rate, the lower the di�erence
between the optimised and the unoptimised S-boxes.

4 CONCLUSION
Providing side-channel countermeasures represents a complex task
when considering the IoT. �e rationale is that the IoT has extreme
constraints in terms of area and power consumption. In this pa-
per, we investigate lightweight side-channel countermeasures min-
imising the implementation costs. More precisely, we investigate
whether the key enumeration should be considered when designing
side-channel a�acks resilient S-boxes. Genetic algorithms provide
S-boxes that reduce the success probabilities of side-channel adver-
saries while keeping the same power consumption, clock cycles,
and multiplicative complexity as an unprotected S-box.

�e results exhibit that there is no advantage to take into account
the key enumeration in order to build higher order resilient S-
boxes. In other words, S-boxes minimising the �rst order success
rate, minimise also a higher order success rate. Consequently,
the designers of S-boxes can save computational power by only
focusing on the �rst order success probability of physical a�acks.
As a future work, since we recognise several classes for the 4 ⇥ 4
size that seem to be favoured by our search strategy, we plan to
conduct additional experiments where we concentrate only on the
S-boxes belonging to those classes.
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