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Abstract. In cryptography, a side channel attack is any attack based
on the analysis of measurements related to the physical implementa-
tion of a cryptosystem. Nowadays, the possibility of collecting a large
amount of observations paves the way to the adoption of machine learn-
ing techniques, i.e. techniques able to extract information and patterns
from large datasets. The use of statistical techniques for side channel at-
tacks is not new. Techniques like Template Based DPA have shown their
effectiveness in recent years. However these techniques rely on paramet-
ric assumptions and are often limited to small dimensionality setting,
which limits their range of application. This paper explores the use of
machine learning techniques to relax such assumption and to deal with
high dimensional feature vectors.
For this purpose, we first formalize the problem of studying the relation
between power consumption and encryption key as a supervised learning
task. Then we compare and assess several classifiers and dimensionality
reduction techniques in a real experimental setting. Our promising re-
sults regarding the 3DES encryption scheme confirms the importance of
adopting machine learning approaches in cryptanalysis.

Keywords: Cryptanalysis, side channel attack, template Based DPA,
machine learning.

1 Introduction

Side channel attacks [9] take advantage of the fact that instantaneous power
consumption, encryption time [8] or/and electromagnetic leaks [6] of a cryp-
tographic device depend on the processed data and the performed operations.
Power analysis attacks are an instance of side-channel attacks which assume that
different encryption keys imply different power consumptions. The evolution of
the techniques proposed for power analysis attacks along the years has been
characterized by an increase of the complexity of the statistical analysis.

Simple Power Analysis (SPA) [9] is the first approach proposed for power
attack and it relies on an interpretation of the power consumption in order to
deduce information about the used key. In other words, it tries to detect a pattern
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in a trace linked to an information about the operation executed. For example,
Kocher [8] in 1996 showed that RSA implemented with a square and multiply
algorithm allows recovering the key.

Differential Power Analysis (DPA) [9] uses a more advanced statistical anal-
ysis than SPA by modeling theoretic power consumption for each key. The like-
lihood of the observed power consumption for each model is then used to predict
the key.

Template Based DPA [4] makes an additional step by estimating the condi-
tional probability of the trace for each key. It extracts all possible informations
available in each trace and is hence the strongest form of side channel attack
possible in an information theoretic sense. This method relies on a parametric
Gaussian estimation approach which, though effective in some cases [11], has sev-
eral limitations. The method is ill-conditioned if the number of observed traces
is smaller than the number of features used to describe the trace. This is the
case if the entire sequence of trace measures is taken into consideration.

This paper intends to make one further step in the statistical analysis of power
consumption data by taking advantage of machine learning techniques [7]. The
role of machine learning in cryptanalysis has already been discussed in [14]. An
application of machine learning to cryptanalysis is presented in [2] where a ma-
chine learning algorithm is used to find information about the printed characters
of a printer by exploiting the information hidden into the acoustic noise.

Here we focus on two aspects of power consumption analysis which has been
neglected so far in the literature: the issue of dimensionality reduction and the
one of model selection. The first aims to extract from the observed data a minimal
number of features able to take into account the information that the trace
brings about the key. The second aims to go beyond the parametric assumptions
made in TDPA by using techniques of model assessment and selection to find
in a nonparametric and data-driven way the technique which provides the best
accuracy in predicting the key.

We will show that a machine learning procedure based on dimensionality
reduction and model selection is able to outperform conventional TDPA by im-
plementing an attack of a byte of the 3DES encryption key which is two times
faster.

This paper is organized as follows: Section 2 introduces the notation and
reviews the TDPA approach. Section 3 presents our machine learning approach
to power analysis attack. A description of the experimental system and the
results of an attack based on a machine learning technique are described in
Section 4. Section 5 concludes the paper and discusses future work.

2 The TDPA approach

Let us consider a crypto device executing a decryption/encryption algorithm
with the binary key Ok, k = 1, . . . ,K, where K = 2B is the number of possible
values of the key and B is the number of bits (excluding parity bits). Let us
observe N times over a time interval of length n the power consumption of
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such device and let us denote by trace the series of observations T (k)
i ∈ <n,

i = 1, . . . , N associated to the kth key. The state-of-the-art Template Based
DPA approaches models the stochastic dependency between the key and a trace
by means of a multivariate normal conditional density

P (T (k)|Ok;µk, Σk) =
1√

(2π)n|Σk|
e−

1
2 (T

(k)−µk)Σ
−1
k (T (k)−µk)

T

where µk ∈ <n and Σk, k = 1, . . . ,K, are respectively the expected value and
the covariance of the n variate trace associated to the kth key.

Once a set of N traces T (k)
i , i = 1, . . . , N , is observed for each key the TDPA

estimates the expected value µk and the covariance Σk by the sampled mean

µ̂k =
1

N

N∑
i=1

T
(k)
i

and the sample covariance

Σ̂k =
1

N

N∑
i=1

(T
(k)
i − µ̂k)T (T (k)

i − µ̂k)

An unlabeled trace T is observed when we do not know the key linked to it.
Once such an unlabeled trace T is observed, the techniques returns the key

which maximizes the likelihood

k̂ = argmax
k

P̂ (T |Ok) = P (T |Ok; µ̂k, Σ̂k)

This approach makes implicitly the assumption that the distribution of the traces
for a given key follows a parametric Gaussian distribution, whose number of
parameters is equal to (n2 + 3n)/2. Note that the number of parameters can
rapidly become very large, and much larger than N , for observation intervals of
moderate size (e.g. n > 20).

3 Our approach

This paper proposed the adoption of a machine learning approach to estimate
from a set of annotated traces the conditional distribution P (Ok|T ) where Ok ∈
{0, 1}B . In order to learn this dependency from data we implement a procedure
which relies on three steps: decomposition of the prediction task into B separate
classification tasks, dimensionality reduction and model selection.

The decomposition of the problem (Figure 1) is dictated by the fact that
most of the classification techniques commonly used in machine learning address
multi-input single-output problems.

Dimensionality reduction is necessary in order to deal with experimental
settings where the number n of time steps is comparable or larger than the
number N of collected traces. We consider four techniques of dimensionality
reduction:
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Fig. 1. Decomposition of the prediction problem into a set of classification tasks

– Principal Component Analysis (PCA) [12]: this well-known technique re-
duces the number n of variables by projecting each trace into a new set of
uncorrelated variables.

– Ranking: it is a simple selection technique which returns the highest variant
variables

– the minimum Redundancy maximum Relevance (mRMR) filter algorithm [13]:
this technique was proposed in bioinformatics to deal efficiently with config-
urations where the number of variables is larger than the number of samples.
It ranks variables by prioritizing the ones which have a low mutual depen-
dence while still providing a large information about the output.

– Self Organizing Map (SOM) [10]: it is a kind of artificial neural network. It
associates each trace with a neuron and organizes the network in order to
group similar traces.

Model selection is used in order to avoid the parametric assumption made in
TDPA and find in a data driven perspective the model which best fits the
stochastic dependency between key and power consumption. We considered three
different learning machines:

– Self Organizing Map (SOM) [10]: SOM has also been used as a predictive
model.

– Support Vector Machine (SVM) [5]: it is one of the most used techniques
in classification since it builds efficiently hyperplanes in high dimensional
spaces.

– Random Forest (RF) [3]: it relies on the principle of model averaging by
building a number decision trees and returning the most consensual predic-
tion.

In order to assess the predictive power of our models, we use the method of
leave-one-out. It is executed in N rounds. Each round uses N − 1 traces to learn
a model and the remaining trace to assess the generalization accuracy of the
model. This is repeated until every trace has been used for testing purposes.
The best one is which maximizes the value returned by leave-one-out.
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4 Experiments and discussion

In our experiments we consider the attack of a FPGA device1, encrypting with
a block cipher 3DES algorithm a randomly chosen constant message of 64 bits.
Triple DES uses a "key bundle" which includes three DES keys each of 56 bits
(excluding parity bits). It represents an encryption DES, followed by a decryption
DES followed by another encryption DES. Each one uses a different key. Triple
DES takes in input a message of 64 bits and returns ciphertext of the same length
through a series of operations. To decrypt, it executes the same operations in
reverse. For the sake of simplicity, we restrict to consider attacks of a single
byte (e.g. 7 non-parity bits) of the bundle at the time. This means that we will
consider a target value Ok which can take K = 27 = 128 different values. Note
that in the following we will use synthetically the term key to denote the target
of our attack, though, in fact, we address one byte at the time.

The experimental procedure is composed of four parts. The first one is a
preliminary analysis of the trace distribution which relies on a visualization in
a three dimensional space of principal components. The second part is devoted
to model selection and aims to select the combination of a learner and feature
selector which returns the highest classification accuracy. Such selection is done
by considering only the last byte of the first key (B18 in Figure 2)2. Each time
when a byte is attacked, the others are randomly chosen constants. Once the
optimal configuration is chosen this one is used for attacking the remaining
bytes of the 3DES bundle. The last part of the experimental session considers
again the byte B18 and assesses the machine learning approach versus the TDPA
approach.

.

Fig. 2. Representation of the three DES keys.

In the 3D visualization and model selection, for each possible value of the
last byte of the first key (B18), N = 400 power consumption traces T (k)

i over

1 Our target device is a Xilinx Spartan XC3s5000 running at a frequency around 33
MHz.

2 Instead to gather the bits of the key positioned in the same byte, we could group
the bits entering in the same S-Box in order to improve our attack. Nevertheless, in
order to have a generic attack, we choose not to do so.
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a time interval of length 20000 are collected by an oscilloscope Agile infiniium
DSO80204B 2Ghz 40GSa/s. Note that the final dimensionality of the trace is
set to n = 9399 since only the encryption portion of the trace (between 8000th
and 17399th times) is considered.

When we attack all the 24 bytes of the DES bundle, for each possible value
of the other target bytes, N = 400 power consumption traces T (k)

i over a time
interval of length 5999 are collected by an oscilloscope Agile infiniium 1GHz
4GSa/s.

4.1 3D visualization

This section focuses on a preliminary visualization of the distribution of the
traces associated to the byte B18. Since for each value of the key N = 400 power
consumption traces are collected, we first filter out the noise by computing for
each value Ok of the key the average trace value µ̂k ∈ <20000 for each key :

µ̂k =
1

400

400∑
i=1

T
(k)
i

Then, a preliminary idea of the dependence between µ̂k and Ok can be obtained
by representing a projection of the n dimensional traces in a tridimensional space.
To project the traces, we used the first three PCA components [12]. The seven
subfigures of Figure 3 correspond to the seven bits of the B18 byte (B181, B182,
..., B187). Points of the same color are linked to traces connected to keys that
share the same value for a bit. These visualizations suggest that traces, linked
to different values of their lower bits, are less separable and as a consequence,
those bits should be more difficult to predict.

4.2 Model selection

This section assesses and compares several classifier configurations by using a
leave-one-out approach. As discussed in Section 3 we build a different classifier for
each non parity bit of the byte B18. We considered 3 different types of models
and 4 types of feature selection. In the following, the notation A / B is used
to denote the classifier configuration with the learner A and feature selection
algorithm B.

The different types are used:

– SOM(8× 5) /: a self organizing map with size 8× 5
– SOM(9× 5) /: a self organizing map with size 9× 5
– SOM(8× 6) /: a self organizing map with size 8× 6
– SOM(9× 6) /: a self organizing map with size 9× 6
– SVM / Rank: a support vector machine with feature selection rank
– SVM / Nosel: a support vector machine with feature selection nosel
– RF / Rank: a random forest with feature selection rank
– RF / Nosel: a random forest with feature selection nosel
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Fig. 3. This figure shows the 128 traces, from the 8th byte of the first key (B18),
projected in 3D. The black dots represent a bit value 1 and the others symbolize a bit
value 0. The different colors indicate a different value of: the 7th bit (B187) in A, of
the 6th bit (B186) in B, of the 5th bit (B185) in C, of the 4th bit (B184) in D, of the
3rd bit (B183) in E, of the 2nd bit (B182) in F and of the 1st bit (B181) in G.

– RF / SOM: a random forest with feature selection self organizing map
– RF / PCA: a random forest with feature selection principal component anal-

ysis

The leave-one-out accuracy percentage for different learning configurations and
the different bits are reported in Table 1. Note that some bits are predicted with
50%. Those percentages are a rounding to 50% for each percentage lower than
50% estimated by the leave-one-out. The reason of this rounding comes from the
fact that the worst estimation of the percentage of good answers is 50%.3

It is possible to remark that the most accurate learning configuration is the
one made by a PCA algorithm and a Random Forest learner. In the following
this learning configuration will be the one used to attack the other bytes of the
DES bundle.

4.3 Generalization to the other DES bytes

This section generalizes the attack to all the 24 bytes of the DES bundle. For
each byte of the bundle, N = 400 traces are collected for each of the 128 possible
instances. After the preprocessing step, the RF/PCA is used to predict the bits.
The prediction accuracy results computed by leave-one-out are summarized in
Table 2.
3 The idea to invert the value of predicted bit by the model, in order to switch the
percentage of good answers, is not relevant. The reason is that a model of machine
learning cannot learn the opposite of what is showed to it.
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7th bit 6th bit 5th bit 4th bit 3rd bit 2nd bit 1st bit
SOM(8× 5) 96.09 90.23 87.50 74.22 53.52 50.00 50.00
SOM(9× 5) 97.27 92.19 83.98 69.53 57.81 51.17 50.00
SOM(8× 6) 96.48 89.45 83.59 73.44 57.42 50.00 50.00
SOM(9× 6) 95.70 92.97 85.94 78.52 58.20 51.56 50.00
SVM / Rank 94.53 80.47 72.66 62.5 50.00 50.78 50.00
SVM / Nosel 96.48 90.23 82.81 73.05 64.06 53.52 50.00
RF / Rank 97.66 83.98 81.64 77.34 61.33 57.42 50.00
RF / Nosel 96.09 92.58 89.06 83.98 59.77 55.47 50.00
RF / SOM 96.48 89.06 82.81 76.17 60.94 50.00 50.00
RF / PCA 96.09 92.58 90.63 85.55 75.39 58.98 50.00

Table 1. The leave-one-out accuracy percentage for different learning configurations
and the different bits.

7th bit 6th bit 5th bit 4th bit 3rd bit 2nd bit 1st bit Dim
1st key
1st byte 78.13 65.63 77.34 60.16 60.16 53.13 50.00 61
2nd byte 85.16 75.00 67.97 50.00 57.03 50.00 50.00 17
3rd byte 78.91 67.97 70.31 69.53 67.97 50.00 51.56 44
4th byte 85.16 73.44 60.94 57.81 50.00 50.00 54.69 25
5th byte 89.84 78.91 65.63 60.16 64.84 52.34 50.00 28
6th byte 82.03 73.44 60.16 59.38 50.78 54.69 60.94 40
7th byte 69.53 67.19 61.72 50.78 54.69 50.00 50.00 24
8th byte 78.91 72.66 56.25 50.00 53.91 50.00 50.00 39

2nd key
1st byte 95.31 67.19 70.31 59.38 53.91 55.47 50.00 18
2nd byte 78.13 75.00 67.19 59.38 50.00 50.00 57.03 51
3rd byte 97.66 85.94 65.63 57.81 50.00 50.00 50.00 28
4th byte 93.75 84.38 63.28 52.34 57.03 52.34 50.00 41
5th byte 92.19 82.81 67.97 63.28 50.00 62.50 50.00 43
6th byte 75.00 71.88 64.06 65.63 50.00 50.00 54.69 68
7th byte 90.63 69.53 70.31 61.72 56.25 51.56 50.00 2
8th byte 91.41 83.59 82.81 67.19 64.84 50.00 50.00 32

3rd key
1st byte 89.84 74.22 62.50 54.69 60.94 50.00 54.69 23
2nd byte 96.09 82.81 64.06 60.16 65.63 50.00 50.00 31
3rd byte 95.31 84.38 76.56 54.69 60.94 50.00 50.00 17
4th byte 84.38 74.22 68.75 64.06 57.03 50.00 50.00 6
5th byte 93.75 81.25 60.94 54.69 57.81 50.00 50.00 16
6th byte 90.63 89.84 72.66 68.75 60.16 50.00 50.00 56
7th byte 96.88 87.50 64.06 61.72 61.72 50.00 50.00 30
8th byte 71.09 66.41 64.06 65.63 50.00 60.94 50.00 5
average 86.66 76.47 66.89 59.54 56.90 51.79 51.40 31.04
s.d.4 8.44 7.39 6.09 5.71 5.71 3.45 2.88 17.38

Table 2. The prediction acuracy results of RF/PCA computed by leave-one-out. The
value of “Dim” is the number of variables to consider.
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These results confirm the output of the visualization phase since on average
the last bits of the byte appear to be the most predictable. For instance, the
prediction error for B117 is lower than the one for B111. Moreover, on average,
the number of variables to consider is about 31 with a standard deviation of
17.38.

From prediction to the attack The prediction results obtained in the pre-
vious section suggest an attack strategy that we will denote as enhanced brute
force. The rationale of the strategy is the following: we start by running the RF
/ PCA model to predict the encryption key. In the case the key is not predicted
correctly, we invert the value of the most difficult bit to predict. If the key is
correct the attack is successful otherwise we proceed by flipping the value of the
second most difficult bit and so on. As a result we obtain a brute force strategy
enhanced by the fact that we take into account the rate of correct predictions
for each bit of the key.

Let us consider the following example. Suppose we need to predict a key
of 8 bits and that our model predicted the value 0011 1101. Suppose that the
first bits are less predictable than the remaining ones. Let us assume that the
probabilities of predicting correctly each bit are as follows:

8th bit 7th bit 6th bit 5th bit 4th bit 3rd bit 2nd bit 1st bit
90.42 86.66 76.47 66.89 59.54 56.90 51.79 51.40

If the model did not return the correct key, we complement the first bit. Then
we proceed by testing the following keys: 0011 1101, then 0011 1100, then 0011
1111, then 0011 1110, then 0011 1001, ...

4.4 Comparison between RF / PCA and template Based DPA

The last part of our experimental setting aims to compare the accuracy of the
RF / PCA model to the template based DPA. For that reason, we carry out a
set of attacks of a byte of the key under the same conditions. This means that
the following parameters are identical for both attack strategies:

1. the oscilloscope
2. the device implementing the 3DES encryption
3. the probes
4. the number of traces
5. the measured traces
6. the computer that performs the calculations of effectiveness of each attack.

We reduce the number of points for each trace through a feature selection
method. The large dimensionality of the traces requires the adoption of a di-
mensionality reduction step before implementing the TDPA. Here we used the
mRMR filter [13].

The accuracy of the template Based DPA / mRMR attack as a function of
the number of features is summarized in Figure 4.
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Fig. 4. Percentage of correct classification of the byte vs. number of variables.

It is interesting to remark that the technique is not reliable when the num-
ber of features goes beyond a certain value. This is due to the ill-conditioning
of the covariance matrix when the number of features is too large. The adoption
of a regularized approach (shrinkage estimation [15]) for computing the covari-
ance makes possible the use of a larger number of variable though this has no
remarkable effects in terms of accuracy (Figure 5).

The rate of correct predictions is indeed below the rate of model RF / PCA
as shown by the table below showing the percentage of correct classification in
the case of 35 variables.

7th bit 6th bit 5th bit 4th bit 3rd bit 2nd bit 1st bit
94.53 78.13 78.13 67.19 53.13 55.47 50.78

4.5 Discussion

The experimental results show that in the case of a FPGA encryption device
implementing 3DES, the use of machine learning techniques improves the ef-
fectiveness of the power analysis attack with respect to conventional TDPA.
In quantitative terms the use of machine learning increases the probability of
recovering a byte of the key form 5.80% to 15.33%.

An alternative way of assessing the effectiveness of an attack strategy is
to consider the guessing entropy measure [16] which quantifies the difficulty of
guessing the value of a key. This quantity measures the number of guesses to
make on average before finding the right key with the enhanced brute force



COSADE 2011 - Second International Workshop on Constructive Side-Channel Analysis and Secure Design

39

.

Fig. 5. Percentage of shrinked TDPA correct classification of the byte vs. number of
variables.

strategy. Suppose that the possible values of the key are sorted with decreasing
probability as shown in Section 4.3 (O[1], O[2], . . . , O[K]) where O[1] denotes the
most predictable key. The guessing entropy is defined as:

G =

K∑
k=1

(kP (O[k]))

where P (O[k]) is the probability the kth value of the key is the correct one.
If we measure the accuracy of the strategy in terms of guessing entropy,

we obtain that on average the enhanced brute force strategy needs 11 tests to
recover the key while the template Based DPA / mRMR needs 21 of them.

Another interesting side effect of the adoption of feature selection strategy in
our approach is that this helps understanding which part of the trace is the most
informative about the key. For instance it could be interesting to know whether
there is any important information outside the period of encryption.

The mRMR results suggest that there is a certain amount of information
also outside the encryption interval. A possible explanation could be that the
encryption key is sent unencrypted to the FPGA before encryption by a co-
processor Intel 386.

5 Conclusion

We presented and assessed a machine learning approach able to infer from power
consumption observations a model which predicts the bits of a 3DES encryption
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key. The availability of an increasing amount of observations about the physical
behavior of a cryptosystem makes of machine learning algorithms an important
component of an attack strategy.

We can notice that we made empirically comparisons between each model.
This is the only kind of comparisons that we were allowed to do because of two
facts. First, each model of machine learning used in this paper is as a blackbox
who did not allow to know why one of them is the best. Second, template Based
DPA was used in a context with many variables. In this context, it does not
allowed us to verify if the hypothesis done by the model is correct. In other
words, we do not have an algorithm to verify if a set of traces comes from a
multivariate Gaussian.

Future work will focus on the generalization of these preliminary results:
first by considering larger portions of the key, second by assessing the impact
of the coded message on the prediction accuracy, then by varying the crypto-
graphic device and finally by varying the number of measures during learning
and validation process.

Interesting future research perspectives are provided also by the adaption of
specific learning techniques for the classification of time series and the fusion of
different measurements as in [1].
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