Variety of scalable shuffling countermeasures
against side channel attacks

Nikita Veshchikov, Stephane Fernandes Medeiros, Liran Lerman

Department of computer sciences, Université libre de Bruxelles, Brussel, Belgium.
{nveshchi, stfernan, llerman}@ulb.ac.be

Abstract

IoT devices have very strong requirements on all the resources such as mem-
ory, randomness, energy and execution time. This paper proposes a number of
scalable shuffling techniques as countermeasures against side channel anal-
ysis. Some extensions of an existing technique called Random Start Index
(RSI) are suggested in this paper. Moreover, two new shuffling techniques
Reverse Shuffle (RS) and Sweep Swap Shuffle (SSS) are described within
their possible extensions. Extensions of RSI, RS and SSS might be imple-
mented in a constrained environment with a small data and time overhead.
Each of them might be implemented using different amount of randomness
and thus, might be fine-tuned according to requirements and constraints of
a cryptographic system such as time, memory, available number of random
bits, etc. RSI, RS, SSS and their extensions are described using SubBytes
operation of AES-128 block cipher as an example, but they might be used
with different operations of AES as well as with other algorithms. This pa-
per also analyses RSI, RS and SSS by comparing their properties such as
number of total permutations that might be generated using a fixed number
of random bits, data complexity, time overhead and evaluates their resistance
against some known side-channel attacks such as correlation power analysis
and template attack. Several of proposed shuffling schemes are implemented
on a 8-bit microcontroller that uses them to shuffle the first and the last rounds
of AES-128.

River Journal, 1-37.
(© 2017 River Publishers. All rights reserved.

2 N. Veshchikov et al.

Keywords: Side channel analysis, countermeasures, hiding techniques, shuf-
fling countermeasure, microcontroller, AES, lightweight shuffling.

1 Introduction

One of the most fast and wide spreading domains in modern digital world is
the domain of mobile connected devices called the Internat of Things (IoT).
This world is composed of embedded systems, small portable devices such as
smartcards or microcontrollers. These interconnected devices are distributed
among their users who can also be potential attackers, thus security of IoT
is an important issue. A new type of attacks become very important in this
context: attacks where the adversary has access to the attacked device. These
attacks are among the most powerful attacks on cryptographic implementa-
tions, and they represent real-world thread to the IoT devices. Side channel
attacks (SCA) are among the most efficient and strongest attacks of this
type. Instead of targeting the algorithm (an abstraction), they focus on their
implementations (real, physical devices).

Since side channel attacks on implementations of cryptographic algo-
rithms were introduced to the scientific community [8,9] a number of differ-
ent countermeasures were suggested and studied in literature. Reordering of
independent operations, generally referred as shuffling, was suggested as one
of the possible countermeasures against side channel attacks [7, 18]. Small
embedded devices have lots of constraints such as time, power consump-
tions, amount of memory that might be used or amount of random bits that
a Random Number Generator (RNG) might generate per encryption. Thus,
often lightweight security and lightweight countermeasures are privileged for
implementations in such environments. Even less constrained environments
often have strong requirements on parameters such as e.g., high through-
put. Some countermeasures might heavily affect the execution speed of an
algorithm (e.g., increase it by a factor of 6 or 7) [13], so even in such envi-
ronments relatively lightweight countermeasure that would not heavily affect
the performance of the device would often be the designer’s choice.

This work proposes a set of scalable shuffling techniques that can be fine
tuned to fit specific requirements and constraints of a given application. The
designer can use our schemes according to the resources that are available
in the system including random numbers, timing constraints and available
memory.

Scalable shuffling schemes 3

1.1 Related works

Shuffling has already been studied in the literature. Random Start Index (RSI)
was applied on AES block cipher by Herbst et al. [7] and by Tillich et al. [21].
In their implementation of AES, operations were executed in a sequential or-
der but with a different randomly chosen starting index: RSI starts by choos-
ing a column index, this index will be the index of the first column to be
processed (other columns will be processed sequentially). Furthermore, a
second index is chosen for the starting line, for all of the columns. In their
schemes, shuffling was combined with masking and applied only on the ini-
tial AddRoundKey, SubBytes and MixColumns of the first round and on
MixColumn and AddRoundKey of round 9 as well as on SubBytes and Ad-
dRoundKey of the last round. RSI shuffling technique is very lightweight and
may be easily implemented with virtually no overheads [14, 15]. The basic
versions of RSI such as used by Tillich et al. [21] requires 4 random bits.
We suggest several extensions of the RSI shuffling technique, our extensions
are scalable i.e., they are flexible in terms of the number of random bits that
might be used in order to shuffle instructions (e.g., from 1 up to 10 random
bits in case of AES-128).

Fully random permutation, inside AES operations, was suggested by Tillich
etal. [21] and applied by Rivain et al. [18]. They also combined masking and
shuffling countermeasures.

Veyrat-Charvillon et al. [23] also studied the basic RSI shuffling tech-
nique and suggested improvements to Random Permutation (RP) shuffling
technique by manipulating the program’s control flow. RP technique allows
to reorder all 16 bytes of one operation (such as SubBytes) of AES-128, it
might generate all possible 16! permutations (which is roughly 2442%) using
64 random bits [23]. This technique is not as lightweight as RSI but is able
to generate much more permutations (all of them). Our shuffling schemes
require less randomness than RP, but they also produce less permutations.
Our shuffling techniques are as lightweight as RSI, but they allow to produce
more than 16 different orderings.

RP shuffling technique was also suggested as an improvement (to be used
in combination with masking) for the DPA contest v4 [1, 17] and was used
for the DPA contest v4.2. Two different algorithms were suggested for the
generation of the random permutation, one of them generates full entropy
but it has higher big O complexity while the other is less computationally
expensive but results in lower entropy [1].

4 N. Veshchikov et al.

Fernandes Medeiros [13] introduced a shuffling technique that he called
SchedAES, it randomizes the sequence of instructions of the AES over sev-
eral operations. This countermeasure takes precedence relations between op-
erations into account in order to decide which instruction could be executed
next. It allows to generate many different orderings of operations. Unfor-
tunately, this technique requires additional data structures, a lot of random
bits per execution (up to 3 000 per execution) and could not be used in very
constrained environments.

All shuffling algorithms require randomness as input in order to generate
a permutation, most of them are rigid and require a fixed amount of random
bits for example, technique proposed by Veyrat-Charvillon et al. [23] for
Random Permutation shuffling requires 64 random bits. The algorithm used
by Tillich et al. [21] needs 4 random bits. Our shuffling algorithms allow to
choose the number of random bits and thus allow to tune the implementation
according to constraints and requirements of the system as well as to the
amount of available resources.

1.2 Notations

We are going to use terms shuffling technique to denote a method or an
algorithm that allows to reorder operations (instructions) of an algorithm
without changing its final result. The term shuffle will be used to represent
one possible ordering (one permutation) of all operations (or instructions)
that are being shuffled. Number of shuffles will represent the total number of
all possible different shuffles that can be generated using a particular shuffling
technique.

The abbreviations LSB and MSB denote the least significant bit and the
most significant bit respectively, LSBs and MSBs will be used for several
least and most significant bits. We use terms second LSB and second MSB to
denote the bit next to the LSB and MSB respectively e.g., if the index of the
LSB of a byte is 0 and the index of the MSB is 7 then the index of the second
LSB is 1 and the index of the second MSB is 6. Terms third LSB (MSB) or
fourth LSB (MSB) are used in the same manner.

We will refer to a random number generator used by a cryptographic
system as RNG.

Since it is possible to shuffle one or several rounds of an algorithm as well
as several operations per round and each of these operations might be done in
one or several clock cycles (depending on the used hardware), we are going

Scalable shuffling schemes 5

to use the term random bits available per unit of time where the unit of time
might represent one clock cycle, one operation, one round or one encryption.

1.3 Structure of this paper

The rest of this paper is organized as follows. Section 2 presents our new
shuffling schemes as well as their extensions using SubBytes operation of
AES-128 block cipher as an illustration. Section 3 compares our shuffling
techniques among them as well as with couple of other techniques from sev-
eral points of view. Section 4 sums up the analysis and discusses our results.
Finally, Section 5 concludes this paper and gives a list of suggestions for
further improvements and future works.

2 Scalable shuffling techniques

Here we are going to describe 3 scalable shuffling techniques. For sake of
simplicity all examples presented in this section are given for the SubBytes
operation (application of the S-box) on the state of 128-bit version of AES
block cipher. This section presents shuffling techniques on the example of
the first round of AES, but same shuffling techniques might be applied to
any number of rounds depending on system’s requirements and amount of
available resources (time, memory, amount of random bits, etc). All presented
shuffling schemes might be easily adapted for other operations of AES as well
as for other algorithms.

Most of the shuffling techniques suggested in this section are based on
the fact that the internal state might be seen as a vector or as a matrix. Indeed,
in the memory of a computer, a vector of size 16, a 4 x 4 matrix or even a
2 x 8 matrix are all just tables of 16 memory units (in our case bytes).

2.1 Random start index

Basic version Random Start Index (RSI) shuffling for AES-128 represents the
AES state as a vector of 16 elements. S-box is applied to all 16 bytes one by
one starting from a randomly chosen index (between 0 and 15). This shuffling
technique requires 4 random bits and it gives us 16 possible starting indexes
(and 16 different shuffles in total).

Two different variations of the basic RSI technique might be implemented,
those techniques generalize RSI and might be applied with less or more
random bits (between 1 and 10 bits in our AES-128 examples).

6 N. Veshchikov et al.

Vector-RSI

Vector RSI (V-RSI) extension, uses the same representation of the AES-
128 state as the basic RSI, the state is used as a vector and a random start
index might be chosen with less than 4 bits of randomness. It might be done
by giving a fixed value to all missing bits, by reusing some of the available
random bits (eventually by combining them) or even by combining these two
approaches, see Figure 1.

| Fixed Part Random Part Combmed Part
Starting Index

Figure 1: Structure of V-RSI index generation. The order of bits coming from
different parts might be chosen arbitrarily.

For example, if we have only 3 available random bits for the RSI, we can
fix the position of the missing one as the LSB of the starting index and always
assign its value to 0. In this case we will have 8 possible shuffles with only
even numbers as starting indexes, see Figure 2(a).

Here is another example, lets say we have only 2 random bits per unit
of time and we would like to use V-RSI shuffling. We can fix those random

RO[R1|R2| O 1 |Rx|RO|R1

(a) 3 random bits and 1 fixed bit. (b) 2 random bits, 1 fixed bit and 1 com-
bined

Figure 2: Example of V-RSI use with 2 and 3 available random bits

Scalable shuffling schemes 7

bits as two LSBs of the index, fix the value of the MSB of the index to 1
and assign the value of the second MSB to the exclusive-or (XOR) of the two
available random bits. If we use this algorithm to generate the starting index
we will be able to generate 4 different shuffles that might start with indexes
8, 11, 13 or 14, see Figure 2(b). This last example is not practical, especially
in software implementations, since it requires additional computations. Nev-
ertheless, it is worth noting that we can actually choose any starting index for
an implementation by choosing how to assign values to missing bits that are
needed in order to have a random index.

An idea of using 3-part computation (fixed part, random part and com-
bined part) in order to generate a random index might be used in a scenario
when the shuffling scheme used by the device is the same for all devices, but
each instance is different thanks to different combination functions and dif-
ferent fixed parts. In such scenario each device will use a different shuffling,
thus an attacker will have less chances of being able to profile one device in
order to attack another one.

Matrix-RSI

The second extension, that we call Matrix RSI (M-RSI), of the RSI tech-
nique handles the internal state of AES as a matrix and treats it row by row.
Since the state is handled row by row, we can just apply the V-RSI on each
row. Since all rows are handled separately, we can also start with any row
i.e., we can reuse V-RSI technique in order to choose the starting row. This
technique might allow us to shuffle SubBytes operation with 1 to 10 random
bits and can give us from 2 to 1024 possible shuffles.

Table 1 shows how M-RSI might be applied on AES-128 state depending
on the number of available random bits per unit of time. This table is struc-
tured as follows, All rows part shows how we can go through all rows and
Cells in a row part shows how we may handle all cells in one row. Following
notations are used: Fixed — normal, non-random algorithm is used (e.g., O,
1, 2, 3); Rand(n) — starting index is chosen using n random bits; S — same
random numbers are used to get the starting index in each row, D — different
random bits are used to generate the starting index in different rows. For
example, if we have 6 available random bits and we want to use M-RSI,
according to the table we might use 2 bits in order to choose a random row
to start with and we can also use 1 bit per row in order to choose a random
starting index in each row (using V-RSI with 1 bit on a vector of 4 bytes).

Notice that this table only gives some examples of how to use M-RSI per
number of available bits, multiple combinations might be implemented for
some numbers e.g., for 4 bits we might also use 2 bits in order to choose a

8 N. Veshchikov et al.

Available All rows Cells in a row Number of
Random bits | Bits [Handling | Bits [Handling Shuffles
1 1T | Rand(l) | O Fixed 2
2 2 Rand(2) 0 Fixed 4
3 2 | Rand2) | 1 | Rand(),$ 8
4 0 Fixed 4 Rand(1), D 16
4% 2 Rand(2) 2 Rand(2), S 16
5 1 | Rand(1) | 4 | Rand(1),D 32
6 2 | Rand2) | 4 | Rand(1),D 64
8 0 Fixed 8 Rand(2), D 256
9 1 Rand(1) 8 Rand(2), D 512
10 2 | Rand2) | 8 | Rand(2),D 1024

Table 1: Examples of M-RSI use on 4 x 4 AES-128 state using different
number on random bits. * The second version with 4 bits offers more security,
see Section 3 and Table 5.

starting row and then use 2 random bits in order to choose a random start cell
(same in each row). Some of these choices might be more efficient and/or
more secure than others.

Unfortunately, we were not able to find a “nice” combination that could be
implemented efficiently (that does not need special cases, when implemented)
for 7 available random bits.

2.2 Reverse shuffle

The idea behind the simplest version of Reverse Shuffle (RS) technique is the
following: AES-128 state is used as a vector of 16 bytes, S-box is applied to
all bytes of the state following forward or reversed order (depending on the
value of 1 random bit). For example, if the value of the random bit is 0 we
may go through the state from byte 0 to byte 15 and if the value of the random
bit is 1 we can go through bytes in the reversed order (from 15 to 0).

Matrix-RS

RS might be extended by using the state of AES-128 as a m X n matrix
instead of a vector (where m X n is the size of the original vector, 16 in our
case), we are going to call this extension Matrix-RS (M-RS). We will specify
the exact M-RS version by using the notation M-RS m X n. Note that M-RS
1 x 16 gives us the original simple RS.

Scalable shuffling schemes 9

Cells Sweep Order AES-128 state

- =
‘ 1] I Rows
< 1 Sweep
Order

—_

—_—

Figure 3: Example of M-RS 4 x 4 with 4 available random bits.

Available All rows Cells in a row Number of
Random bits | Bits | Handling | Bits [Handling | Shuffles
1 1 Rand 0 Fixed 2
2 1 Rand 1 Rand, S 4
3 1 Rand 2 Rand, 2S 8
4 0 Fixed 4 Rand, D 16
5 1 Rand 4 Rand, D 32

Table 2: Examples of M-RS use on 4 x 4 AES-128 state using different
number on random bits.

The idea behind M-RS 4 x 4 is the following: we can use RS on each row
(of 4 bytes) as well as for all rows (start from row 0 or row 3 in the matrix).
It allows us to use from 1 up to 5 random bits for shuffling. For example,
if we have 4 random bits we can go through all rows in forward order (no
randomness required), we can also go through all cells in each row in forward
or reversed order (different order for all rows, 4 bits of randomness), see
example in Figure 3, also see Table 2.

Table 2 shows how M-RS 4 x 4 might be applied on AES-128 depending
on the number of available random bits. This table uses following notations:
Rand means that indexes are handled in forward or reversed order randomly,
Fixed means that same fixed order is used to go through cells in a row (or rows
in the matrix); S means that same random bits are used on several rows!, D
means that different random bits are used for all rows.

Since a 16 byte AES-128 state might be represented as a matrix in several
different ways (matrix of different size), we may use it to our advantage while
using more or less random bits for shuffling. If we want to use more than 5

! 2S in line 3 means that same bits are reused 2 times on 2 different rows and then different
random bits are used on 2 other rows

10 N. Veshchikov et al.

AES-128 state AES-128 state

Y

Figure 4: Going through bytes of AES-128 state matrix with SSS 4 x 4.

random bits and generate more shuffles we can use M-RS 8 x 2 shuffie, it will
allow us to use up to 9 random bits (1 bit per row and 1 bit for all rows) and
generate 512 shuffles.

2.3 Sweep swap shuffle

The idea of Sweep Swap Shuffle (SSS) is based on the fact that the state of
AES-128 might be represented as a m x n matrix (e.g., a4 x 4ora2 x 8
matrix). A matrix might be handled row-by-row or column-by-column. SSS
might also be implemented e.g., by swapping pieces of code that go through
row and column indexes. In order to specify how a vector is represented as
a matrix we will use the notation SSS m x n. Figure 4 shows two possible
orders of SSS 4 x 4.

Scalable shuffling schemes 11

AN A 1
> Vi vVivVvy >
l 1A
VIV Ty S S

Figure 5: Possible shuffles of AES-128 state with P2-SSS 2 x 4 technique.

l Random bits (and k) \ Technique \ Shuffles ‘
1 P1-SSS 4 x 4 2
2 P2-SSS 2 x 4 4
4 P4-SSS 2 x 2 16

Table 3: Examples of P-SSS use on AES-128 state using different number on
random bits.

Part SSS

The idea behind Part-SSS (P-SSS) extension of SSS technique is the fol-
lowing: a state of AES-128 might be broken into several equal parts e.g.,
2 parts of 8 bytes. An SSS technique could be then applied to each part
separately, it would allow us to create more different shuffles (by using more
than 1 random bit). We will use the notation P£-SSS m X n in order to specify
the number k of identical parts that we want to use. Note that P1-SSS 4 x 4
gives us the original SSS 4 x 4. See example of P2-SSS 2 x 4 in Figure 5

By using P-SSS on AES-128 we can generate up to 16 shuffles by using
1 to 4 random bits, see Table 3.

Multidimensional SSS

The idea behind Multidimensional SSS (MD-SSS) extension of SSS tech-
nique is based on the fact that a vector might be seen as a multidimensional
matrix?. For example the state of AES-128 might be seen as 2 x 4 x 2 matrix,
also see examples on Figure 6. It allows us to go through all dimensions in
any order, e.g., in 2 dimensions the state might be handled row by row or

2 Ttis important to note, that we can think about the state as if it was a three dimensional
matrix for the purpose of shuffling, but it does not mean that the state has to be represented
and manipulated as such during the entire algorithm

12 N. Veshchikov et al.

AES-128 state as a vector

[ola[z]o]e]s]e]r[e]o]afe]c]o]e]r]

2 Dimensions 3 Dimensions

0 1 2 3

Figure 6: Examples of representations of AES-128 state as multidimensional
matrices.

Random State

D . . Shuffles
bits representation

2 1 2x8 2

3 3 2x4x2 6

4 5 2X2x2x%x2 24

Table 4: Examples of MD-SSS use on AES-128 state with different number
on random bits.

column by column (go through the first dimension then through the second
one or the other way around).

To specify a version of SSS we are going to use the notation MD-SSS
d1 X dg X --- x dp, where D is the number of dimensions and d; is the size
of the state in the dimension ¢. The number of shuffles that can be generated
with MD-SSS depends on the number of dimensions that is used to represent
the state for the shuffling. Since we can choose any ordering of dimensions
to handle the state, the number of different shuffles that might be generated
is given by D! and thus the number of necessary random bits is given by
[logy D!]. Table 4 gives several examples of MD-SSS used with AES-128
state using different number of available random bits.

Scalable shuffling schemes 13

3 Analysis

In order to analyse our shuffling algorithms as well as to compare them to the
existing schemes we introduce a couple of new terms and definitions.

3.1 Randomization

Randomization range of a shuffling technique is the biggest interval where
the shuffling algorithm operates and where the shuffled operations might be
reordered.

A randomization interval of a shuffling technique might be one operation
(e.g., AddRoundKey), one round (or several operations of one round), several
rounds or the entire algorithm. If the same shuffling technique is applied on
SubBytes operation of all rounds of AES, then the randomization interval of
this technique is still one operation (SubBytes) since instructions in between
different SubBytes are not reordered among them.

The randomization range of all our shuffling techniques is one operation
(SubBytes, as presented in Section 2). RP also has a randomization range
of one operation. SchedAES has a very wide randomization range and it
allows to generate many different shuffles but requires a huge amount of
randomness.

Fully randomized instruction (or operation) is an instruction that might be
reordered (and executed) at any instant in time by a given shuffling technique
inside of its randomization range without changing the final result of the
algorithm that is being shuffled.

A partially randomized instruction (or operation) is an instruction that
is not fully randomized, but that might be reordered and executed at least 2
different instants in time by a given shuffling technique inside of its random-
ization range without changing the final result of the algorithm that is being
shuffled.

An unrandomized instruction (or operation) is an instruction that is al-
ways executed at the same moment in time inside of the randomization range
using a shuffling technique.

A shuffling algorithm is fully randomized if all instructions inside of
its randomization range are fully randomized. If at least one instruction is
unrandomized or only partially randomized, than the shuffling technique is
partially randomized.

RSI applied to SubBytes is fully randomized in its basic version, but if we
use less random bits (as in V-RSI) it becomes only partially randomized. Dif-
ferent versions of M-RSI might be fully randomized or partially randomized

14 N. Veshchikov et al.

depending on choices made during the implementation (different number of
random bits used to choose the start index for rows and inside of each row).

RS and its extensions are always partially randomized and it does not
have unrandomized instructions if used with AES.

Unfortunately SSS is partially randomized and have unrandomized in-
structions since some bytes are always used at the same moment in time,
indeed the S-box is always applied on the first byte at the beginning and on the
last byte at the end of the SubBytes operation. Moreover, if we use e.g., SSS
4x4 on AES-128 S-box on bytes 0, 5, 10 and 15 are unrandomized since these
bytes are situated on the diagonal of the 4 x 4 matrix. In general, handling a
square matrix row by row or column by column does not change the position
of elements on the diagonal. Thus, SSS k£ x k will have k£ unrandomized
instructions.

In order to analyse all of the proposed shuffling schemes, we executed
each one of them through the entire range of possible random inputs that each
algorithm could receive as a parameter. For every algorithm we generated a
heatmap of all possible positions in time when a SubBytes operation can take
place on every single byte id. See examples of such plots on Figure 7, other
figures are available in the Appendix 9. We can see that for each scheme
available positions for each byte are uniformly randomly distributed, with the
exception of 4 bytes of SSS (the bytes that are situated on the diagonal of the
matrix). The exact patterns that we can observe on there heatmaps depend on
the way the scheme was implemented (i.e. which bits were chosen to be fixed
and which are random, recall Figure 1 and 2).

We also generated same type of heatmap for the RP shuffling scheme,
see Figure 8. We used the implementation of RP shuffling scheme from DPA
Contest v 4.2 [17]. It is currently impossible to enumerate all possible inputs
(randomness) required by this shuffling scheme in a reasonable amount of
time, so the heatmap from Figure 8 is generated using 23° permutations. Us-
ing this approximation we can see that the ratio between the highest number
of occurrences of a byte at a given position to the lowest number is equal to
1.000116, which is less than 0.01 % of difference (approximately 27 13).

3.2 Number of shuffles

Optimal shuffling algorithm is an algorithm that is able to generate 2™ differ-
ent shuffles using n random bits.

If we have n random bits of information we will be able to generate at
most 2™ different values. If a shuffling algorithm uses n bits of randomness

Scalable shuffling schemes 15

L__]

j,

Byte index
ok m e s e N oo

P A
Byte index

\\\\\\\\\\\\
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Position Position

(a) M-RSI 4 x 4 with 2 random bits. (b) M-RS 4 x 4 with 2 random bits.
10 1 i 20
10 H L
o] [} L
00 . L! ““““““““ [too
Position Position
(¢) V-RSI with 2 random bits. (d) SSS 4 x 4 with 1 random bit

Figure 7: Examples of heatmaps of positions when the SubBytes operation
takes place for every byte.

and generates less than 2" different shuffles, then it is not an optimal shuffling
algorithm (from the point of view of information theory).

RS, RSI and all of their extensions use n bits in order to generate 2"
shuffles, see Tables 1 and 2, thus these schemes are optimal, however it is
not always the case of SSS. The simple version of SSS is optimal as well as

16 N. Veshchikov et al.

2147600000

2147550000

2147500000

Byte index

2147450000

2147400000

2147350000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Position

Figure 8: Heatmap of Random Permutation (RP) shuffling scheme. Imple-
mentation from DPA Contest v4.2 [1]

P-SSS, but not the MD-SSS since for a MD-SSS we can obtain D! shuffles
(where D is the number of dimensions) and V- a,b € N, (a > 2) — a! # 2°.
RP is able to generate all k! possible permutations of the state (k is
the number of bytes that have to be shuffled), but it is not optimal since it
requires more than logs(k!) random bits, the implementation proposed by
Veyrat-Charvillon et al. [23] requires 64 bits of randomness.

Doubling the number of instants when an operation could be executed
increases the amount of traces required for a successful attack roughly by
a factor of four [12]. Thus, in a perfect scenario, a shuffling algorithm that
generates more different permutations offers more security (because there
should be more possibilities of different operations being performed at a
given moment in time), however it is not always true. It is very important
to notice, that some particular cases of RSI and RS extensions do not always
improve the strength of the countermeasure when more random bits are used.
For example, in the simplest version of RS it can generate only two permu-
tations (forward and reversed), thus we know that we have only two possible
indexes at each moment in time. If one would use 4 x 4 M-RS with 4 random
bits as suggested in Table 2 when rows are always handled in forward order

Scalable shuffling schemes 17

while each row might be handled in the forward or the reversed order, we still
have only two possible indexes that might be used at each moment in time.
Same reasoning applies in some other cases, thus not all versions of each
scheme give a security increase when more random bits are used, for more
details see Table 5.

Nevertheless, when we increase the number of random bits in a scheme
we always increase the number of different shuffles that could be generated.
Thus, from this perspective, the security of a scheme increases i.e., when an
attacker learns the position of one byte it gives him less information about
positions of all other bytes.

3.3 Resources

In addition to randomness, shuffling algorithms also require a certain addi-
tional memory and time. In order to support RP one needs to use an additional
data structure (of the same size as the internal state of the algorithm, so
its memory overhead is O(k), where k is the size of the state). Depending
on the algorithm RP might also require additional time overhead O(k) up
to O(k3) [1]. Our extensions of RS, RSI and SSS do not require as much
memory, their memory overhead is limited to a couple of variables (generally
to recompute and hold new indexes), in other words their memory overhead is
O(1). The only exception might be MD-SSS, where we need to store a small
table of the size equal to the number of dimensions, which is always smaller
than the size of the original internal state; in this case the memory overhead
is O(log(k)).

Shuffling as a countermeasure also results in a time overhead. The ex-
act time overhead might vary depending on the implementation and on the
available hardware. We did several experiments on a ATMega 328P 8-bit
microcontroller, all our code was written in C++. The microcontroller used an
external 16 MHz clock. We implemented some of the variations of shuffling
techniques that were described in Section 2. We applied several techniques on
the SubBytes operations of the first and the last round of AES-128. The only
detail that changed between different implementations were the two calls to
functions that implemented different versions of SubBytes. In order to mea-
sure the time we encrypted 10 000 random plaintexts with different random
bits as inputs to our shuffling techniques. Table 6 presents our results includ-
ing and excluding the time needed for the generation of random bits (for
shuffling). The first and the last rounds used same random bits for shuffling.
We can see that most of the overhead comes from the RNG. The source code

18 N. Veshchikov et al.

. . Operations Total
Technique Random Bits NMin [Max | Shuffles
RP [23] 64 16 16 16!
RPe 45 16 16 16!
RSI 4 16 16 16
1 2 2 2
2 4 4 4
V-RSI 3 N 3 N
4 16 16 16
1 2 2 2
2 4 4 4
3 8 8 8
4 2 2 16
M-RSI 4 x 4 4* 16 16 16
5 4 4 32
6 8 8 64
8 4 4 256
9 8 8 512
10 16 16 1024
RS 1 2 2 2
1 2 2 2
2 4 4 4
M-RS 4 x 4 3 4 4 8
4 2 2 16
5 4 4 32
P1-SSS4 x 4 1 1 2 2
P2-SSS 2 x 4 2 1 2 4
P4-SSS 2 x 2 4 1 2 16
1 1 2 2
MD-SSS 3 1 3 6
5 1 4 24

Table 5: Min and max number of different SubBytes operations that might
occur at a fixed moment in time i.e. the number of different bytes of the state
that might be handled at a given moment in time during shuffling. Results
for different techniques are given according to the examples given in the
paper. Result for RPe represents the theoretical lower bound on the number
of necessary random bits, [log, 16!] = 45.

Scalable shuffling schemes 19

Including RNG Excluding RNG
Algorithm RND bits | Time | Overhead | Time | Overhead
No shuffling 0 13197 0.0 13197 0.0
RS 1 14500 9.9 13547 2.7
1 14201 7.6 13246 0.3
2 14438 9.4 13486 2.1
M-RS 4 x 4 3 14480 9.7 13528 2.5
4 14362 8.8 13412 1.6
5 14465 9.6 13514 2.4
SSS4 x 4 1 14394 9.0 13441 1.8
1 14426 9.3 13473 2.1
2 14426 9.3 13473 2.1
V-RSI 3 14424 9.3 13473 2.1
4 14423 9.3 13472 2.1
1 14186 75 13232 0.3
2 14185 75 13232 0.3
3 14322 8.5 13369 1.3
4 14323 8.5 13372 1.3
M-RSI 4 x 4 5 14425 9.3 13474 1.3
6 14423 9.3 13475 1.3
8 14319 8.5 13373 1.3
9 14397 9.1 13452 1.9
10 14398 9.1 13452 1.9

Table 6: Execution time of 10 000 executions AES-128 encryptions with dif-
ferent shuffling techniques applied to the SubBytes operation of the first and
the last rounds. Columns Including RNG and Excluding RNG give infor-
mation including and excluding time for the generation of random numbers
required for shuffling. Time is given in milliseconds, overhead is in %.

is available on our website®. All calculations (of indexes for memory accesses
during shuffling) did not use conditional branching in any way dependent on
the random bits used for the shuffling in order to prevent possible SPA and
Timing attacks.

We can see that the overhead is relatively small and reasonable, but not
negligible. Different techniques give slightly different time overheads which
give the ability to choose depending on timing constraints that are imposed
to a system.

3 http://www.ulb.ac.be/di/dpalab/download.html

20 N. Veshchikov et al.

These results might probably be improved by implementing other variants
of our shuffling techniques or by implementing them in the assembly code
(while taking into account the architecture of the microcontroller).

3.4 Resistance against side-channel attacks

We analyse 3 different scenarios which represent 3 attackers of different
strength in order to show the differences between presented shuffling schemes.

Unprofiled attack

Correlation Power Analysis (CPA) [3, 6] is considered to be among the
strongest non-profiled Differential Power Analysis (DPA) attacks [8]. We
have tested several versions of our shuffling schemes against CPA attack.
The CPA was conducted using the Hamming Weight (HW) leakage model on
simulated power traces. We have implemented the following algorithm:

r = Sbox(k & m)

where 7 is the resulting 4 x 4 state, k is a 16 bytes fixed key and m is a 16
bytes message. The application of Sbox function was shuffled using different
shuffling schemes. In order to simulate power traces we used SILK [22]
simulator with the following parameters: Hamming weight as the leakage
function and the noise variance was set to 2. Same parameters were used for
all simulations with different shuffling schemes.

Figure 9 shows the estimated number of traces that is necessary in order to
extract the key with various shuffling techniques used as countermeasures. As
expected, the number of traces increases with the number of different bytes
that might be handled at a fix moment in time (due to shuffling). The success
rate of this attack on each scheme is shown in Figure 12 (Appendix 6).

The same CPA was applied to all shuffling techniques. among the pre-
sented algorithms, there are several techniques that give same advantage against
a classic versions of DPA-like attacks, but some of them may generate more
different permutations in total (see Table 5) and should make implementation
specific attacks more difficult.

Implementation specific unprofiled attack

We used same simulation parameters and same algorithms and applied a
CPA attack in a scenario when the attacker is aware of the shuffling scheme
and knows the details of its implementation. We applied a preprocessing tech-
nique called integration to the power traces before applying the correlation
power attack. In this scenario we sum all points which could be related to the
attacked byte according to the shuffling scheme that is used, see Figure 7 and

Scalable shuffling schemes 21

7200 —| M-RSI*;, V-RSl, «

6300 —

5400 —

Traces to attack
w I
[2] o
o o
o o
| |

N

3

o

o
|

« M=RSl3 ¢, V-RSl3

900 - M-RSIs g, V-RSI;
M-RSI;,M-RS; 3 5

. 8§ M-RSIy 4, V-RSI;, M-RS; 4
No S‘hufﬂing

T T T T T T T
2 4 6 8 10 12 14 16

Number of possible bytes used at fixed moment in time

Figure 9: Number of traces needed to extract the key using CPA on different
implementations.

Figures of the Appendix 9. Thus, for a scheme where a byte can be handled in
d different positions we integrate d points, for example we integrated 4 points
while attacking M-RSI 4 x 4 with 2 random bits, those points correspond to
positions where byte 0 can potentially be handled (i.e., points that correspond
to bytes 0, 1, 2 and 3 in a scenario without shuffling, see Figure 7(a)). To sum
up, we suppose that the attacker knows exactly where a given byte can be
handled in a power traces.

Figure 10 shows the number of traces needed to successfully extract the
secret (lowest number of traces where the success rate of the attack equals
one). More details on some attacks are in Figure 13 (Appendix 7). We can
see, that this technique is more powerful than a “simple” CPA against all
shuffling schemes. Nevertheless, our results show that the more bytes can be
found in a particular position (same moment in time during the execution of
an algorithm), the more difficult this attack becomes.

Profiled attack

22 N. Veshchikov et al.

1400 — V-RSl, o
M-RSI*, «
1200
1000
X
Q
£
£ 800 -
e
® . V-RSI
g 600 - M-RSl, « :
F + M-RSlg
400 |
. M=RSlg, M-RS;
200 | t M-RSI, 5, V-RSlp, M-RS; 5
§ M-RSl; 4, V-RSl;, M-RS; 4
0 4 ° No Shuffling

T T T T T T T T
2 4 6 8 10 12 14 16

Number of possible bytes used at fixed moment in time

Figure 10: Number of traces needed to extract the key using CPA with
integration as a preprocessing technique.

We used a Gaussian Template Attack (TA) [5] in a scenario when an
attacker has profiling capabilities and when he has the knowledge of the
shuffling scheme (i.e., he knows all points in time when a byte can be handled
in the same way as in the unprofiled CPA with integration). However, in this
scenario the attacker does not control the randomness during the profiling,
which corresponds to a real case scenario (the randomness for cryptographic
operations is generated inside of the device), thus an attacker does not know
the full permutation (order of bytes during a single execution)*.

For each target value (attacked byte) the template corresponds to an av-
erage and a covariance matrix. The complexity of the parameters’ estimation
for each of these templates depends on the number of points that have to be
considered during an attack. The number of points in each attack depends
on the number of points in time when a byte might be handled and thus the

* Even in a case when an attacker knows all random values, he might choose not to use
them in order to speed up the profiling phase of the attack by building less templates.

Scalable shuffling schemes 23

number of points depends on the shuffling scheme. We used 5 000 traces per
target value in order to build all profiles.

The number of traces needed to extract the key with high probability is
shown in Figure 11 (the success rate of each attack can be found in Figure 14
in Appendix 8). These results shows us that the success of an attack depends
on the number of possible bytes that could be handled at the same moment
in time (due to shuffling), which is also the case for two other attacks. We
can also note that the TA is better than the CPA with integration when the
number of points used for the TA is low (i.e., when the number of positions
where an given byte can be handled by the shuffling scheme is low or in other
words when the number of possible bytes used at a fixed moment in time is
low) e.g., see Figures 13 and 14 for 2 possible positions. However, the TA is
less effective than the CPA with integration of points for schemes that result
in permutations where a byte could be in many different positions (many
points to consider in the TA), compare Figures 13 and 14 for 16 possible
bytes used at a fixed moment. The advantage of the TA compared to the CPA
with integration decreases when more points have to be taken into account
due to the fact the TA suffers from the estimation error in high dimensionality
contexts.

Targeting the RNG

Another implementation specific technique that an attacker might be used
in order to attack these schemes could also be implemented. An attacker that
knows the exact implementation of the shuffling countermeasure that was
used might try to recover random bits used to shuffle the bytes and then
extract the key using this knowledge (by finding the positions of shuffled
operations using known random numbers). This technique was used to attack
a masking scheme of a DPA Contest [10, 11]. Basically, the attacker targets
the random number generator which allows to effectively remove the security
mechanism that uses randomness. Thus, all masking and shuffling schemes
are vulnerable to attacks that can successfully target the random number
generator.

Attacks on other shuffling schemes

Our results with all three attacks suggest that the difficulty of attacking
a given shuffling scheme mostly comes with the number of positions where
a given byte can be handled during an execution of the cryptographic algo-
rithm. To be more precise, all schemes that can put a given byte at d positions
require the same number of traces to extract the key for a given attack, see
Figures 9, 10 and 11 where all points of the same column overlap or lie close
to each other. Moreover, we can observe that the success rate of each attack on

24 N. Veshchikov et al.

6000

M-RSI*;, V-RSl, o
5000

4000

Traces to attack
w
o
o
o
|

2000

« M-RSlIg, V-RSI3

1000 — « M-RSI3

No Shuffling , M-RSlz,5 8, V-RSI3, M-RS3 3 5

0- * *M-RSl4 V-RSl;, M-RS; ,

I I I I I I I I
2 4 6 8 10 12 14 16

Number of possible bytes used at fixed moment in time

Figure 11: Number of traces needed to extract the key using TA on different
implementations.

all schemes that result in putting a given byte to the same number of positions
also closely follow each other, see Figures 12, 13 and 14.

Using these observations, we conclude that a given attack on any scheme
S will give the same performance that this same attack on a scheme S’ that
can shuffle a byte into the same number of positions as the scheme S. Thus,
an attack on the first byte of the SSS is identical to attacking an unprotected
implementation, while an attack on the second byte will perform as an attack
on a byte of e.g., V-RSI with 1 random bit (see Table 5 and Figures 7(d)
and 15(a)). Same resoning can be applied to P-SSS and MD-SSS schemes.
Thus, the RP scheme is as difficult to attack as M-RSI 4 x 4 with 10 bits or
V-RSI with 4 random bits (see Table 5).

Nevertheless, it is important to note, that this reasoning holds if the RNG
is not biased and if the implementation under attack does not have addi-
tional flaws that an attacker can exploit nor additional sources of informa-
tion available to the attacker. This result can also vary in case if additional
countermeasures are applied with a shuffling scheme.

Scalable shuffling schemes 25

3.5 Applications & modifications

It is easy to apply RSI, RS, SSS and their extensions to SubBytes or Ad-
dRoundKey operations of AES-128 since each of them operates only on one
byte of the state at a time and does not have any precedence requirements
inside of the operation. In order to apply these techniques to ShiftRows or
MixColumns operations we may simply consider a row or a column as a
memory unit (instead of a byte).

Same techniques might be adapted for 192-bit and 256-bit versions as
well as for other operations of AES cipher by using more random bits to
handle additional rows. RSI, RS, SSS and their extensions might be also
applied to other algorithms. These techniques should be applicable if parts of
the state are used independently from each other during some computations
e.g., the application of the S-box in ciphers like Blowfish [19], DES [16] or
PRESENT [2].

We can also combine RS, RSI, SSS and their extensions in order to obtain
more different shuffles, e.g., RS might be used with 10-bit version of M-RSI
on the AES-128 in order to get 2048 different shuffles by using 11 random
bits.

Finally, it is worth noting that not all techniques presented here (as well
as their extensions) are equally practical and are equally secure (with a given
number of random bits). Nevertheless, we considered that all versions with
their extensions should be presented for the sake of completeness of this
work. For example, SSS is not as practical as RSI extensions for security,
optimality as well as penalty reasons; however, we think that SSS is a nice
case study for theory.

4 Discussion

All of the shuffling schemes that we propose and describe are similar i.e., each
one suggests a way of going through all indexes of the state in a particular
order that could be easily implemented with a small overhead. Most of these
techniques could be seen as extensions and generalizations of the random
starting index shuffling scheme.

Our scalable shuffling schemes can offer different number of shuffles and
different number of positions (moments in time) where a particular byte is
handled, overall it results in different levels of security. In order to choose
which shuffling scheme to implement we advise the designers of a cryptosys-
tem to consider the following criteria in given order:

26 N. Veshchikov et al.

e Number of available random bits

e Timing constraints

e Number of different operations that could be handled at a given moment
in time

e Number of shuffles

The first criterion is related to the basic constraints of the system, so the
designer should use as much randomness as he can in order to increase the
security. The second criterion changes depending on the given hardware and
implementation, so it has to be tested for each platform individually, how-
ever, our results show that all shuffling schemes that we present result in
very similar timing overhead. Results of all our attacks suggest that a scheme
which generates shuffles such that higher number of different bytes that could
potentially be handled at a fixed moment in time (from the beginning of the
execution) increases the difficulty of an attack. Thus a designer of a cryp-
tosystem should choose a shuffling algorithm that maximizes this number.
Finally, the number of different shuffles that a given shuffling scheme can
produce does not influence the number of traces that is needed in order to
mount a successful attack. However, mounting some profiled attacks becomes
increasingly difficult when the number of shuffles grows since an attacker
would have to create a model per shuffle [4]. This parameter can also help in
case if the attacker can find out a position of one byte in order to reduce the
remaining uncertainty on the positions of other bytes.

Our results based on side-channel analysis using 3 different attackers
show that the number of different operations that might occur at a given mo-
ment in time produces the biggest effect on the success rate of an attack. This
result hold even for attacks that take into account the implemented scheme.
From this perspective, the SSS scheme presents a disadvantage because it
does not shuffle all bytes, some of the bytes always remain at a fixed position
in a trace. However, SSS could still be interesting in practice, because it could
be implemented using only a couple of additional instructions on many hard-
ware platforms (without taking into account the random number generator)
e.g., conditional swap instruction (MSWAPF) available on TMS320x2803x
or using compare-and-exchange (CMPXCHG) that is available on many Intel
and AMD processors. SSS could also be easily combined with other shuffling
schemes thus giving a boost to the security of the system.

A specific type of attack could also be mounted against all of the pre-
sented shuffling schemes. If an attacker targets the random number generator
in order to find out the ordering that is generated by the shuffling scheme,

Scalable shuffling schemes 27

she can effectively remove the protection given by the countermeasure. This
type of attack could be mounted on any shuffling of masking countermea-
sures [10]. Thus, algorithmic countermeasures that rely on randomness re-
quire a secure random number generator that could not be easily targeted
through side-channel analysis.

5 Conclusions and future works

Often it is important to be able to choose among several different countermea-
sures, since some of them might be implemented more efficiently on a given
platform (e.g., the hardware might have special instructions available), that is
why it is quite important to have an entire set of different countermeasures
that might offer similar performances. This is especially the case when the
developed system has a lot of strong constraints, which is the case in mobile
applications such as used in IoT.

We presented a couple of new scalable shuffling techniques (RS and SSS)
and a wide variety of their extensions as well as several different extensions
of an existing shuffling scheme (RSI). The main advantage of our proposals
is the fact that they allow developers to fine-tune the countermeasure to their
needs. It is possible to adjust parameters of our shuffling techniques depend-
ing on the requirements and constraints of the cryptosystem such as time (or
throughput), code (or hardware) size and amount of available random bits per
unit of time. In other words, our proposals are not as rigid as other existing
shuffling schemes.

We have compared RSI, RS and SSS extensions between them as well
as with couple of other shuffling techniques such as RP from the several
points of view: data overhead, required amount of random bits and num-
ber of different shuffles (orderings) that might be generated as well as their
relative strength against CPA attack on a simulator. We also implemented
AES-128 block cipher using 21 of the proposed extensions of RSI, RS and
SSS on an 8-bit microcontroller in order to compare their time overhead over
an unprotected implementation. In our implementations shuffling is applied
on SubBytes operations of the first and the last rounds of AES-128, but it
could easily be extended to more operations, other versions of AES as well
as other ciphers. Presented techniques offer different levels of security given a
fixed number of random bits, however some of them are easier to implement
than others depending on the target hardware platform, so even less secure
techniques might be useful.

28 N. Veshchikov et al.

Our results show that the main parameter that influences the success rate
of an attack against a shuffling technique is the number of different bytes that
might be handled at a fixed moment in time, but not the number of shuffles
(during an attack on one byte). However, the number of shuffles increases
the difficulty of mounting a profiled attack and it also increases the difficulty
of attacking the entire key (position of one byte gives less information on
positions of the others), thus it is also an important parameter.

This techniques should not be used as a stand alone countermeasure. It
should be combined with masking techniques e.g., as suggested for the DPA
Contest v4 [1], especially since some studies show that masking techniques
are much more efficient in presence of noise [20], additional noise could be
provided by shuffling.

As a future work it would be interesting to implement same countermea-
sures on different hardware platforms in order to analyze whether some of
them might be better adapted to particular platforms. It would also be inter-
esting to explore different combinations of RSI, RS, SSS and their extensions.
Some of them might not be practical, others might be efficient and generate
more permutations. Finally, it would be nice to further extend these shuffling
techniques in order to allow them to shuffle several operations of the same
round at once, like SchedAES [13].

Acknowledgements

The research of L. Lerman is funded by the Brussels Institute for Research
and Innovation (Innoviris) for the SCAUT project. The research of S. Fernan-
des Medeiros is funded by the Région Wallone.

References

[1] Shivam Bhasin, Nicolas Bruneau, Jean-Luc Danger, Sylvain Guilley, and Zakaria Najm.
Analysis and improvements of the dpa contest v4 implementation. In Security, Privacy,
and Applied Cryptography Engineering, pages 201-218. Springer, 2014.

[2] Andrey Bogdanov, Lars R Knudsen, Gregor Leander, Christof Paar, Axel Poschmann,
Matthew JB Robshaw, Yannick Seurin, and Charlotte Vikkelsoe. Present: An ultra-
lightweight block cipher. In Cryptographic Hardware and Embedded Systems-CHES
2007, pages 450-466. Springer, 2007.

[3] Eric Brier, Christophe Clavier, and Francis Olivier. Correlation power analysis with a
leakage model. In Cryptographic Hardware and Embedded Systems-CHES 2004, pages
16-29. Springer, 2004.

(4]

[5

—

[6

—

[7

—

[8

—_—

[9

—

[10]

[11]

[12]

[13]

[14]

Scalable shuffling schemes 29

Nicolas Bruneau, Sylvain Guilley, Annelie Heuser, Olivier Rioul, Francois-Xavier Stan-
daert, and Yannick Teglia. Taylor expansion of maximum likelihood attacks for masked
and shuffled implementations. In Jung Hee Cheon and Tsuyoshi Takagi, editors, Ad-
vances in Cryptology - ASIACRYPT 2016 - 22nd International Conference on the Theory
and Application of Cryptology and Information Security, Hanoi, Vietnam, December 4-8,
2016, Proceedings, Part I, volume 10031 of Lecture Notes in Computer Science, pages
573-601, 2016.

Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Template attacks. In Burton S. Kaliski
Jr., Cetin Kaya Kog, and Christof Paar, editors, Cryptographic Hardware and Embedded
Systems - CHES 2002, 4th International Workshop, Redwood Shores, CA, USA, August
13-15, 2002, Revised Papers, volume 2523 of Lecture Notes in Computer Science, pages
13-28. Springer, 2002.

Jean-Sébasticn Coron, Paul Kocher, and David Naccache. Statistics and secret leakage.
In Financial Cryptography, pages 157—-173. Springer, 2001.

Christoph Herbst, Elisabeth Oswald, and Stefan Mangard. An AES smart card imple-
mentation resistant to power analysis attacks. In Jianying Zhou, Moti Yung, and Feng
Bao, editors, Applied Cryptography and Network Security, 4th International Conference,
ACNS 2006, Singapore, June 6-9, 2006, Proceedings, volume 3989 of Lecture Notes in
Computer Science, pages 239-252, 2006.

Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In Advances
in Cryptology-CRYPTO 99, pages 388—397. Springer, 1999.

Paul C. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and
Other Systems. In Neal Koblitz, editor, CRYPTO, volume 1109 of Lecture Notes in
Computer Science, pages 104—113. Springer, 1996.

Liran Lerman, Gianluca Bontempi, and Olivier Markowitch. A machine learning ap-
proach against a masked AES - reaching the limit of side-channel attacks with a learning
model. J. Cryptographic Engineering, 5(2):123-139, 2015.

Liran Lerman, Stephane Fernandes Medeiros, Gianluca Bontempi, and Olivier Markow-
itch. A machine learning approach against a masked AES. In Aurélien Francillon
and Pankaj Rohatgi, editors, Smart Card Research and Advanced Applications - 12th
International Conference, CARDIS 2013, Berlin, Germany, November 27-29, 2013. Re-
vised Selected Papers, volume 8419 of Lecture Notes in Computer Science, pages 61-75.
Springer, 2013.

Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power analysis attacks: Re-
vealing the secrets of smart cards, volume 31. Springer Science & Business Media,
2008.

Stephane Fernandes Medeiros. The schedulability of aes as a countermeasure against
side channel attacks. In Andrey Bogdanov and Somitra Kumar Sanadhya, editors,
SPACE, volume 7644 of Lecture Notes in Computer Science, pages 16-31. Springer,
2012.

Marcel Medwed, Francois-Xavier Standaert, Johann Grofschidl, and Francesco Regaz-
zoni. Fresh re-keying: Security against side-channel and fault attacks for low-cost
devices. In Progress in Cryptology—-AFRICACRYPT 2010, pages 279-296. Springer,
2010.

30

[15]

[16]
[17]

[18]

(19]

[20]

[21]

[22]

(23]

N. Veshchikov et al.

Amir Moradi, Oliver Mischke, and Christof Paar. Practical evaluation of dpa coun-
termeasures on reconfigurable hardware. In Hardware-Oriented Security and Trust
(HOST), 2011 IEEFE International Symposium on, pages 154-160. IEEE, 2011.

NIST FIPS PUB. 46-3. data encryption standard. Federal Information Processing
Standards, National Bureau of Standards, US Department of Commerce, 1977.
TELECOM ParisTech SEN research group. DPA contest. http://www.dpacontest.
org.

Matthieu Rivain, Emmanuel Prouff, and Julien Doget. Higher-order masking and shuf-
fling for software implementations of block ciphers. In Christophe Clavier and Kris
Gaj, editors, Cryptographic Hardware and Embedded Systems - CHES 2009, 11th Inter-
national Workshop, Lausanne, Switzerland, September 6-9, 2009, Proceedings, volume
5747 of Lecture Notes in Computer Science, pages 171-188. Springer, 2009.

Bruce Schneier. Description of a new variable-length key, 64-bit block cipher (blowfish).
In Fast Software Encryption, pages 191-204. Springer, 1994.

Frangois-Xavier Standaert, Nicolas Veyrat-Charvillon, Elisabeth Oswald, Benedikt Gier-
lichs, Marcel Medwed, Markus Kasper, and Stefan Mangard. The world is not enough:
Another look on second-order dpa. In Advances in Cryptology-ASIACRYPT 2010, pages
112-129. Springer, 2010.

Stefan Tillich, Christoph Herbst, and Stefan Mangard. Protecting AES software im-
plementations on 32-bit processors against power analysis. In Jonathan Katz and Moti
Yung, editors, Applied Cryptography and Network Security, 5th International Confer-
ence, ACNS 2007, Zhuhai, China, June 5-8, 2007, Proceedings, volume 4521 of Lecture
Notes in Computer Science, pages 141-157. Springer, 2007.

Nikita Veshchikov. Silk: High level of abstraction leakage simulator for side chan-
nel analysis. In Proceedings of the 4th Program Protection and Reverse Engineering
Workshop, PPREW-4, pages 3:1-3:11, New York, NY, USA, 2014. ACM.

Nicolas Veyrat-Charvillon, Marcel Medwed, Stphanie Kerckhof, and Franois-Xavier
Standaert. Shuffling against side-channel attacks: A comprehensive study with cau-
tionary note. In Xiaoyun Wang and Kazue Sako, editors, Advances in Cryptology
ASIACRYPT 2012, volume 7658 of Lecture Notes in Computer Science, pages 740-757.
Springer Berlin Heidelberg, 2012.

Scalable shuffling schemes 31

Appendix
6 Simple CPA

109 __ No shuffling
—— M-RS,;
0.8 1 M-RS,
g M-RS;
> 06+ — M-RS,
2 —— M-RSs
3 0.4
3
[
0.2 -
0.0
T T T T T T
1 5 10 50 500
Number of traces
109 ___ No shuffling
—— V-RSI,
0.8 7 V-RSl,
g —— V-RSl,
= 0.6 — V-RSl,
[%]
3
o 0.4 4
3
[
0.2
0.0
T T T T T T
1 5 10 50 500
Number of traces
109 ___ No shuffling
—— M-RSI;
0.8 4 M-RSI,
g M-RSl;
=06 — M-RS|
2 —— M-RSK
S 04 - — M-RSk
I —— M-RSlg
02 4 — M-RSlg
0.0

-
o -
=]
o
o |
o
a
o -
o

Number of traces

Figure 12: The success rate of an non-profiled correlation power analysis
against different shuffling techniques. Horizontal axis is logarithmic.

32 N. Veshchikov et al.

7 CPA with integration

1.0 4

—— No Shuffling
—— M-RS;
0.8 7 M-RS,
g M-RS;
= 06 — M-RS,
2 — M-RS;g
S 0.4
>
(7]
0.2 4
0.0 +
T T T T T T
1 5 10 50 500
Number of traces
109 no Shuffling
— V-RSI;
0.8 - V-RSl,
g —— V-RSI,
= 06 — V-RSl
%]
8
o 0.4
=
(7]
0.2 §
0.0 1
T T T T T T
1 5 10 50 500
Number of traces
109 __ No Shuffling
—— M-RSl
0.8 4 M-RSI,
g M-RSI3
= 0.6 1 — M-RSl,
2 —— M-RSI%,
§ 0.4 4 — M-RSIs
a —— M-RSIg
02 | — M-RSl
0.0 1

N
o -
=
o
o |
o
al
S -
o

Number of traces

Figure 13: The success rate of an non-profiled correlation power analysis with
integration (preprocessing) against different shuffling techniques. Horizontal
axis is logarithmic.

Scalable shuffling schemes 33

8 Template attack

1.0
—— No Shuffling
087 _— M-Rs,
g M-RS,
= 06 M-RS;
2 —— M-RS,
8 044 — M-RSs
=
(7]
0.2 §
0.0
T T T T T T
1 5 10 50 500
Number of traces
1.0
—— No Shuffling
087 — v-Rs|
g V-RSI,
= 06+ — V-RSh
2 —— V-RSI,
3 0.4
>
(7]
0.2 ’_/—/
0.0 1
T T T T T T
1 5 10 50 500
Number of traces
1.0
—— No Shuffling
087 — M-Rsl
g M-RSI,
= 06 M-RSI;
2 —— M-RSI,
§ 04 4 —— M-RSI*
? —— M-RSIg
024 —— M-RSlg
—— M-RSlg
0.0 1

T T
50 500

[
al
=
o

Number of traces

Figure 14: The success rate of a (profiled) template attack against different
shuffling techniques. Horizontal axis is logarithmic.

34 N. Veshchikov et al.

9 Heatmaps of byte positions distributions

“““““““
«
.

10
13 4
12 4 08
114 08
10 4
9 06
-} 0s
2 84
H g
2 74 £
& @
4 =
6 04
04
5
.
2] 02
02
2
14
00
o
00
L e S e S S S
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 -—
Position 0 1 2 3 4 5 6 7 8 9 1011 12 13 14 15
Position
15 F
10
14 F 14
13 F
08 12 F
n [12
10 4 F
s 9 L
3 3
3 T 84 F
£ £ 10
® 2 . L
= s 7
@)
04 6| L
5 L
ad L 08
02 34 L
2 L
14 F 06
00
o L
\\\\\\\\\\\\\\\\
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Position Position

(c) V-RSI 3 bits (d) V-RSI 4 bits

Figure 15: V-RSI Heatmap of positions when the SubBytes operation takes
place for every byte.

Byte index

Position

(a) M-RSI 1 bit

Byte index

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Position

(¢) M-RSI 3 bits

T T T
7 8 9 10 11 12 13 14 15

Byte index

Position

(e) M-RSI"* 4 bits

Byte index

Byte index

Byte index

Scalable shuffling schemes

L e e e e AL s s s
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Position

(b) M-RSI 2 bits

L

Position

(d) M-RSI 4 bits

Position

(f) M-RSI 5 bits

Figure 16: M-RSI 4 x 4 Heatmaps of positions when the SubBytes operation

takes place for every byte.

36 N. Veshchikov et al.

o

8

74

64

54

ad

Byte index
ok N w B 0 o N~ @ © B B K B R &
Byte index

P
—
° 5 8 8] g g

B — T
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Position Position

(a) M-RSI 6 bits (b) M-RSI 8 bits

15 4 8
“ 60 14 F 644
13 134 L
12 12 L
50
1 1 L
1 642
10 104 L
N 2 o L
£ L b
s s 64.0
2 7 o 2 7 L
& &
6 6 8
5 2 5 F
. o L 638
3 34 r
10
2 24 r
1 14 8 636
0
0 7 r
T T T T T T T T T T T T
6 1 2 3 4 5 65 7 8 6 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 o 10 11 12 13 14 15
Position Position

(c) M-RSI 9 bits (d) M-RSI 10 bits

Figure 17: M-RSI 4 x 4 Heatmaps part 2 of positions when the SubBytes
operation takes place for every byte.

Scalable shuffling schemes 37

N
139 r
-l i o
B
- —
. mm ;
RS r E
"y o
m |
: :
- - ,
4 . —
. R e o
. n —
g —
Position Position

(a) M-RS 1 bit (b) M-RS 2 bits

u
[|

10 4 8
o L 5
5 M
3 $ 84 8
£ w0 £ 4
© ©
3 £ 79 r
& &
%7 [3
5 L
0s 4 L 2
3 L
2 L 1
. L
00 0
° |]
L__|

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Position Position

(¢) M-RS 3 bits (d) M-RS 4 bits

Byte index

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Position

(e) M-RS 5 bits

Figure 18: M-RS 4 x 4 Heatmaps of positions when the SubBytes operation
takes place for every byte.

